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Abstract 

Automated learning environments collect large amounts of 
information on the activities of their students.  
Unfortunately, analyzing and interpreting these data 
manually can be tedious and requires substantial training 
and skill.  Although automatic techniques do exist for 
mining data, the results are often hard to interpret or 
incorporate into existing scientific theories of learning and 
education.  We therefore present a model for performing 
automatic scientific discovery in the context of human 
learning and education.  We demonstrate, using empirical 
results relating the frequency of student self-assessments to 
quiz performance, that our framework and techniques yield 
results better than those available using human-crafted 
features. 

Introduction and Previous Work 

One of the fundamental goals of scientific research is the 
modeling of phenomena.  In particular, we are interested in 
examining the data produced by students using an on-line 
course.  Intuitively, researchers believe many interesting, 
and potentially useful trends and patterns are contained in 
these logs.  Researchers usually begin with some general 
idea of the phenomenon they would like to understand, and 
then proceed to collect some observations of it.  The 
scientist, for example, might have some prior belief, based 
on existing scientific theory and intuition, that the amount 
of time a student spends reading course notes will affect 
his performance on quizzes, but is not able to specify 
exactly what he means by “time reading notes.”  Is it the 
cumulative number of minutes, split into any number of 
sessions, conducted under any condition, prior to the 
evaluation that matters?  Or is the intensity of the reading 
more important?  Is it better to read the notes right before 
the quiz, for higher recall, or perhaps an earlier viewing 
helps prime the student for learning? Unfortunately, 
researchers have neither the time nor patience to go 
through all these logs, by hand, to find ideal instantiations 
of their features.  In this work, we develop a partial 
solution to this problem of feature discovery that uses a 
computer to intelligently induce higher-level features from 
low-level data. 

 Although computers can produce copious log data, the 
unstructured, low-level nature of these data unfortunately 
makes it difficult to design an algorithm that can construct 
features and models the researcher and his community are 
interested in and can understand.  In fact, the complexity of 
a full search of the feature space, from a statistical point of 
view, would depend on the size of the sufficient statistics 
of the entire data set.  Thus, for all real-world problems, 
brute force search is intractable.   
 A more insidious problem, however, is that even if the 
space of features were able to be enumerated and searched 
efficiently, the number of possible models based on those 
features would be even larger, and any attempt at learning 
a true model would suffer from overfitting and the curse of 
dimensionality.  Although techniques do exist for 
addressing this issue, many do not take into consideration 
the semantics of the features, instead relying on an 
estimation of complexity.  It turns out that by carefully 
limiting the types of features that we can represent and 
search, we reduce our search and overfitting problems 
without, hopefully, cutting out too many expressive 
features. 
 Certain techniques do exist for addressing feature 
selection.  Principle component analysis (PCA) (e.g. 
Schölkopf, Smola, and Müller 1998), for example, finds a 
projection of the data from a higher dimensional space to 
one with fewer dimensions.  This projection reduces the 
number of features needed to represent the data.  
Unfortunately, these projections distort the original, 
presumably intuitive, definition of the features of the data 
into linear combinations of these features.  In this process, 
much of the interpretability of the resulting models is 
sacrificed.  This weakness is present in many of the other 
methods used for feature selection and dimensionality 
reduction, such as clustering and kernel methods (Jain, 
Duin, and Mao 2000).  All suffer from a sacrifice of 
interpretability which has been shown to be essential if 
computational techniques should ever have a serious 
impact on the progress of scientific research (Pazzini, 
Mani, and Shankle 2001).  These are the problems this 
research tries to solve.   



 
 

Figure 1. Feature creation flow diagram 

 

 It is important to note that we face two distinct 
problems, each of which is challenging in its own right.  
The first is defining and searching through the large space 
of possible features.  The second is constraining that 
feature space and biasing the search to discover new 
features that improve predictiveness while still preserving 
the semantics of the original features.  To achieve these 
goals we begin with a relatively small set of core features, 
defined in terms of the raw data, and grow this set, through 
an iterative process of feature creation, scoring, and 
pruning.  At each iteration the predictiveness of the model 
based on the features is increased, while the scientific and 
semantic interpretability of the features themselves is 
hopefully preserved.  Via this semi-greedy process of 
growing and pruning we are able to discover novel, non-
intuitive features without the burden of a brute-force 
search. 

System architecture (overview) 

Figure 1 shows a high level diagram of the cyclical flow of 
data through the feature creation process and provides the 
outline for the structure of the paper.  The arrows represent 
processes, and the items in italics are the inputs and results 
of those processes.  We begin with the initial features of  

the raw data, and iteratively grow candidate features via 
prediction and calculation, and then prune these candidates  
down to create a new generation to begin the process 
again.    Each completed cycle represents one iteration of 
the algorithm.  The process continues until a user-defined 
stopping condition is met, e.g. elapsed computation time, 
R
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 of discovered model, or number of features discovered.   

Models 

The basic idea behind our approach is to search for 
complicated features and put them into a simple model, 
rather than putting simple features into complicated 
models.  Since our search complexity is taking place in 
feature space, we use the simple linear and logistic 
regression frameworks to model the interaction between 
these features and our outcome variables. 

Experiment 

To demonstrate our approach, we provide a case study.  
We looked at whether we could discover complex 
predictive and interpretable features from raw data, given 
an appropriate model.  Specifically, we tried to learn 
features that would help predict the student’s quiz score.   
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Table 1. Atomic features 

 
NAME DESCRIPTION 

User_id (Nominal) Unique user identifier 

Module_id (Nominal) Unique module identifier 

 
Assess_quiz (Ordinal) Number of self-assessment  

quizzes taken by this user in this module 

 

Assess_quest (Ordinal) Number of self-assessment  

questions taken by this user in this module.  

Each self-assessment quiz contains multiple 

self-assement questions. 

 

Quiz_score (Ordinal) (Dependent variable) % of quiz  

questions answered correctly by this student  

in this module.  In each module, students  

were given the chance to take the quiz up to  

three times.  The max of these trials was  

taken to be quiz_score. 

 

Raw Data 

We began with real data collected from students 
participating in the Open Learning Initiative 
[http://www.cmu.edu/oli/].  The raw data from the logging 
software, which records events on a second by second 
scale, is then aggregated into a table of atomic module-
level features.  These features are summarized in Table 1 
and a sample is shown in Table 2.  For the first iteration, 
the raw data itself is taken as the initial set of features. 

 
Table 2. Sample raw data 

 
User_id 

 

Module_id 

    

  Assess 

    quiz     

Assess  

quest         

 Quiz 

score 

Alice module_1 12    27   86 

Bob module_1  14    31   74 

Alice module_2  18    35   92 

Bob 

 

module_2 

  

13 

 

   25 

 

  87 

 

Predicates 

A predicate is a logical statement that is applied to each 
row of the raw data and selects the subset of that data 
which satisfies it.  The process of filtering the raw data into 
subsets in this way is called predication.  The idea is that 
these subsets would form the basis of each new feature.  
We group certain data points together into clusters, based 
on their attributes, and calculate features over these 
subsets.  For example, if we had the predicate: 
User_id=Alice, rows one and three would be selected.  
We could likewise filter on User_id=Bob.  By thus 
predicating on each unique value of a field (in this example 

Alice and Bob are the only unique values of the field 
User_id), we can completely partition the data easily 
and automatically. 

Calculators 

Once a predicate has been applied to the raw data, a 
function can be applied to the resulting filtered subset.  We 
call these functions calculators.  These calculators are a 
way of distilling our instance space (a subset of training 
examples) into their constituent summary statistics.  This 
compression of the space allows us to search it more 
efficiently.  A calculator can perform various operations 
over the fields of the selected data.  For instance, we might 
define a calculator that returned the mean of the 
Assess_quiz field.  Or we could define a count calculator 
that simply returned the number of rows in the subset 
selected by the predicate.  A calculator can be defined to be 
applicable to any field, a certain field, or a class of fields.  
The specific definition of these calculators is guided by 
domain knowledge.  For instance, educational research 
theory may say that timing-effects follow a log-scale 
decay.  Thus, instead of a simple subtraction calculator, we 
may look at log(difference).  The strength of our technique 
is that it searches through this space of calculators 
automatically and suggests those that seem the best.  Table 
3 presents a summary of the calculators used in our 
experiments. 

 

Table 3. Calculators used in our study 

 
NAME DESCRIPTION 

Mean Calculates the mean over any ordinal feature 

Sum Calculates the sum over any ordinal feature 

 Max Calculates the max over any ordinal feature 

 
Min Calculates the min over any ordinal feature 

 

Candidate features 

Once we have applied our calculator to the filtered data, 
the result is a new feature.  This feature is precisely, and 
entirely, defined by the predicate and calculator that 
produced it.  Given this formulation of the feature space as 
a series of predications and calculations, we have a large 
set of features that we can express.  For example, if we 
partitioned the data by predicating on Module_id = 1, and 
Module_id = 2, and then applied the mean calculator to the 
assess_quiz field, we would create a new feature 
describing the mean number of assessment quizzes taken 
within the module.  In terms of the sample data given 
before, this feature, F: mean_assess_quiz, would look like 
Table 4. 

 



Table 4. Feature construction over sample data 

 
X1: 

User_id 

X2: 

Module_id 

 

 

X3: 

    Assess 

      quiz   

   

F: 

Mean 

Assess  

Quiz          

 Y: 

Quiz 

Score 

 

Alice module_1 12    13   86 

Bob module_1  14   13   74 

Alice module_2  18   15.5   92 

Bob module_2  13   15.5   87 

 
 
 The feature can then be evaluated for fitness, based on 
the model being used, and then either be discarded, or 
incorporated into the data.  This process continues 
iteratively, with new features being appended to the data 
set after each round, and becoming atomic features in the 
next round from which to create ever more complicated 
features.  It is important to note that, although the space of 
representable features is large, it is by no means complete.  
For instance, our system of predicates and calculators 
could not express the feature “mean assessment quizzes for 
students whose name starts with an ‘A’” or even the 
simpler feature “mean of assessment quizzes which were 
less than 15.”  By avoiding such freer, even arbitrary, 
feature construction we hope to bias the search space 
towards useful and interpretable results. 

Scoring & Pruning  

The naïve approach to discovering new features would be 
to exhaustively split the data based on all instantiations of 
the predicates, and then apply all calculators to all the 
subsets created by those predicates.  The problem with this 
solution, as mentioned before, is that because of the joint 
nature of the search, its complexity is very large in the 
number of features.  Since we want to create an iterative 
method that can search deeply into the feature space, this 
approach will quickly blow-up and become intractable. 
 Our solution is two-fold: first, the atomic features are 
segmented into semantically similar groups of features. For 
example, all user-related features (such as the user’s id, 
school, section, age, etc) are put into a logical bucket.  
Similarly for all course related features, module related 
features, etc.  Then, the algorithm is applied greedily to 
each bucket, independently.  This segmentation not only 
avoids the joint search problem but also prevents the 
creation of less interpretable and more unlikely features 
like “mean assess quizzes for math modules on Fridays.”  
It may also, of course, exclude other more interpretable 
and likely features.  These buckets reduce the search space 
by limiting certain types of interactions.  It is up to the user 
to decide how he wants to bias the space to balance the 
trade-off between a tractable search and an expressive 
feature space.   
 After this step the b-best features are returned from each 
bucket, and then they are incorporated as candidate 
features into the next step of the algorithm.  In this way, 

the algorithm is able to explore both broadly and deeply, 
but with enough bias so as not to become mired in 
intractability.  In practice, b is a parameter that can be 
tuned to balance this tradeoff and can have different values 
for different bucket types. 
 Additionally, since we are dealing with a multivariate 
feature selection problem, we also consider correlation 
between features.  We use Fast Correlation-Based Filtering 
to heuristically find the subset of features that minimize the 
correlation between features while maximizing the R

2
 of 

the resulting joint multivariate model (Yu and Liu 2003).  
Decoupling correlated features is particularly important 
since one of the strengths of our automated approach is the 
ability to examine many similar, but distinct feature 
formulations.  This similarity creates many highly 
correlated features that, when combined, can lead to brittle, 
unstable features and models if not properly addressed.  In 
addition, removing correlated features significantly reduces 
the size of our search space without discarding too much 
information. 
 Second, features are graded on predictiveness and 
interpretability.  We use R
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to measure predictiveness.  

However, there is no standard technique to measure 
interpretability.  Therefore we use heuristics such as 
measuring the depth of nesting of the feature, in addition to 
the specific predicates, calculators, and component features 
used in the new features creation.  We also look at the 
length of a feature’s name was, with longer names 
implying less interpretability.  These are all combined to 
calculate an interpretability score.  After each iteration, the 
features are scored in this manner, and the k features with 
the best score are graduated to the next iteration, while the 
rest are pruned away.  Selecting a value for k depends on a 
number of factors including the desired running time of the 
algorithm, the memory available and the type of features 
being searched for.  Given a certain allotted running time, 
smaller k will produce deeper searches, while larger k will 
force shallower ones. 
 We should point out that the specific terms and criteria 
used in formulating the interpretability score are another 
critical area in which we can incorporate and apply the 
theory already developed by the educational research 
community.  For example, one can develop a semantic 
taxonomy that prescribes the relative interpretability of 
different combinations of features, based on existing 
literature or explicitly stated scientific hypotheses.  This 
taxonomy can then be applied to the initial features.  
Similarly, but perhaps less expensively, active learning 
could be used to propose a feature to a user who would 
provide feedback as to the feature’s interpretability.  
Leveraging such existing knowledge is vital to the mission 
of this work, as it has been shown that the results of 
automated learning methods tend not to be incorporated by 
the communities they serve, despite their statistically 
demonstrated predictiveness, if the community does not 
feel that its existing corpus of study has been used as a 
starting point for the work (Pazzini, Mani, and Shankle 
2001).  In other words, science is an iterative process, with 



the results of previous experiments informing not just the 
interpretation, but also the design and execution of 
subsequent studies.  It would not make sense, therefore, for 
machine learning techniques always to be applied de novo.  
One of the crucial elements of this algorithm is the degree 
to which it allows for the leveraging and systematic 
inclusion of existing scientific knowledge, as we have seen 
in terms of defining domain specific predicates and 
calculators, along with equally tailored measures of 
predictiveness and interpretability. 

Iteration & Stopping Criteria 

After the best features have been selected, and the rest 
pruned away, we assess the overall fitness of the model.  If 
it satisfies user-set criteria (e.g. cross validation 
performance, or a hard cap on the number of iterations or 
processor time) the process stops and returns the current 
set of discovered features.  If the stopping conditions are 
not met, the process continues again, with the current set of 
features becoming the initial set of features for the next 
iteration of feature exploration. 

Results 

Our experiment had two main goals: a machine learning 
goal of finding features which were predictive of student 
performance, and a scientific discovery goal of finding 
interpretable features which took into account existing 
knowledge and bias.  For each of 24 students, for each of 
15 modules, we collected the three atomic features user_id, 
assess_quiz, and assess_quest.  We also collected the 
student’s quiz_score for that module as an outcome 
variable.  Since not every student completed every module, 
we were left with 203 data points.   

Machine Learning 

For this part of the experiment, we began by randomly 
splitting the data into two subsets: 80% of users into 

training data, and 20% of users into testing data.  We 
decided it was important to split the data by user since 
observations of the same user are highly correlated and 
non-independent.  We then applied one iteration of our 
algorithm to the training data, as described in Table 1, 
which returned a set of k = 7 features deemed the most 
predictive and interpretable.  Since we only looked at one 
type of data (module level) there was no need to set a b 
parameter.  The algorithm took about 30 minutes to finish 
on a P4 3 GHz machine with one gigabyte of memory.  
Our algorithm then trained a linear regression model with 
these seven features to predict quiz_score.  The results of 
this training process were two: first, the features’ 
definitions, which include the name of the predicate used 
to subset the data, and the calculator used to score the data, 
thus producing a feature.  The second product was the 
parameters of the linear model trained on these features of 
the training data.  The learned feature definitions were then 
instantiated over the held-out testing data, and plugged into 
a linear model using the trained parameters.  We also 
considered a baseline model, which we defined as a linear 
model trained using the initial seed features of the raw 
data, before any feature creation was performed.  This was 
to give us a comparison of the improvement gained by 
using our technique.  We then recorded and compared the 
cross-validation R
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 of both models.  The results are 

summarized in Table 5. 
 The important thing to note here is that these features 
were discovered automatically.  Our algorithm discovered 
features that, together, explained over 38% more of the 
variance of unseen data relative to what was possible with 
just the initial, raw features.  This improvement is 
important because an algorithm that found scientifically 
interpretable, but predictively meaningless features would 
be of little value.  In order for our technique to be useful, it 
must increase our ability to explain performance, not just 
semantically, but also quantitatively, in this case by 
increasing the variance explained.   
 

 

 

Table 5. Summary of features and their linear regression coefficients for both the baseline and discovered model.  

Cross validation R
2
 is also included. 

 

Model Cross Validation R
2
 Features in model Beta 

Baseline 7.46 cumulative_assess_quests -0.08 

    cumulative_assess_quizzes  0.92 

Discovered 10.35 cumulative_assess_quests -2.06 

    cumulative_assess_quizzes  3.73 

    mean_assess_quests_per_user -2.82 

    mean_assess_quizzes_per_user  4.55 

    max_assess_quests_per_user -1.22 

    max_assess_quizzes_per_user -3.06 

    min_assess_quests_per_user  2.59 

   



Scientific Discovery 

For this part of the evaluation, we took a closer look at the 
semantic interpretation of the features discovered.  For our 
algorithm to be valid, it should both reinforce our existing 
beliefs about which factors predict student performance, 
and also suggest new features that we have either had 
intuition about, but not been able to formulate precisely in 
terms of the raw data, or which we have never considered 
before.  Details matter.  Although the high level idea of 
measuring frequencies of self-assessment questions and 
quizzes is common across the features examined, the key 
difficulty is how to extract the signal from the noise. 
 In this experiment, mean_assess_quizzes_per_user is 
such a specific definition of an intuitive feature.  
Semantically, this feature could represent the average 
“introspectiveness” of a given user.  That is, the number of 
self-assessment quizzes a student takes, on average, 
compared to his classmates, could give an index into that 
student’s propensity for evaluating himself.  He might take 
more assessments if he feels insecure in his mastery of the 
material.  This model would suggest a negative correlation 
with quiz_score, that is, the less mastery a student has, the 
more assessments he takes, and the poorer his final quiz 
score.  We might further reason that assess_quests would 
have the same type of effect, in this case, negative. In fact, 
this is the opposite of what we find: in our learned model, 
the beta of mean_assess_quizzes_per_user has the opposite 
sign of the beta for mean_assess_quests_per_user.  
Although we cannot be sure of the interpretation of these 
signs since it is a multivariate model, the fact that they are 
opposite is significant.  Could it be that this is where our 
intuition failed us, leading us to conflate the two, distinct 
phenomena: a student choosing to take an assessment quiz, 
and then deciding how many of those quiz questions to 
answer? 
 Thus, presented with this evidence, an educational 
researcher might be forced to rethink his theory: perhaps 
those students who are most motivated to study, are also 
most motivated to evaluate their mastery.  They keep 
reviewing the material until they perform well on the self-
assessments, and only then proceed to the final quiz, on 
which they also do well.  Another plausible hypothesis is 
that taking self-assessment quizzes actually helps students 
master the material, which leads to better final quiz 
performance.  It is important to note that these features and 
their correlations to performance only suggest possible 
predictive relationships, not causal links.  They quantify 
the definition of semantic features in terms of the raw data, 
which is a critical prerequisite for the design and 
implementation of further experiments by the researcher to 
fully investigate these proposed models, including 
distinguishing causation and correlation. 

Generality  

These results are not limited to the specific data or problem 
presented in this paper.  We have applied our same 
framework and algorithm to an entirely separate data 

source and problem, and produced equally significant 
results (discovering the degree to which tutor interventions 
affect the reading comprehension performance of students, 
and how this effect varies over time).  The fact that we did 
not have to substantially change the mechanics of the 
algorithm, or our methods for creating and evaluating 
features, shows not only the generality of our approach, but 
also its utility, as it was able to produce useful results in a 
domain for which it was not intended. 

Future Work 

As we move towards data with possibly more complicated 
underlying structure, we may need to incorporate more 
atomic features and more iterations of feature formation.  
Since the running time of our algorithm is very large in the 
number of features, this expansion raises the very 
immediate specter of intractability.  To this end, we will 
need to further develop methods for guiding and limiting 
the exploration of the predicate and calculator space. 

Limitations 

In this work we have only looked at a relatively small 
(four) number of initial features and calculators.  This 
investigation was adequate to demonstrate our algorithm’s 
theoretical utility.  In practice, however, people are 
interested in data sets with many more initial features.  The 
techniques we have used to limit the feature space, such as 
semantic feature segmentation, will need to be expanded to 
deal with the increase in search space associated with more 
features and calculators.  Similarly, as the number of data 
points increases, so too does the number of predicates that 
can be formed, further increasing the number of candidate 
features to be constructed and evaluated.  As the 
algorithm’s search space increases, new search strategies 
will need to be developed.  A greedy search based on a 
relatively simple score, such as the one presented here, 
may not be sufficiently powerful to distinguish the few 
choice features from the increasingly numerous distractors.  
Although we have achieved promising results in the 
investigation presented here, as well as in the preliminary 
examination of a separate data set, more studies will be 
needed to establish the generality of our approach. 

Better & Faster Search 

Now that we have established that predictive features 
requiring relatively few iterations of generation and 
pruning can be discovered, we need to demonstrate that 
more complicated features can be discovered from real 
data.  Specifically, we are interested in searching both 
more widely within each partition of features (that is, 
increasing the breadth of candidate features considered by 
pruning fewer features in each iteration) and more deeply 
(that is, running more iterations).  Obviously, each small 
increase in either of these dimensions greatly increases the 
number of calculations needing to be performed.  One 
mitigation of this increase would be the construction of 



decomposable feature scores, that is, scores that do not 
have to be computed de novo for each feature, but instead 
could be composed of other, already calculated feature 
scores.  This simplification would allow us to incorporate 
more features into the search, while only incurring an 
incremental increase in running time.  Another idea is to 
develop a stronger theoretical foundation for the definition 
of our feature space.  A smoother parameterization, along 
with more theoretical insight, could allow for the 
application of more efficient search techniques such as 
gradient ascent.  This would also allow the incorporation of 
data with more initial attributes, more data points, and the 
incorporation of more calculators. 

More Interpretable Features 

Along these same lines, more intelligent partitioning of the 
feature space could reduce complexity while also 
increasing the quality of the features returned.  Since this 
partitioning is one of the key biases we have into the 
search space, it is important to explore different ways of 
dividing features so as to minimize search complexity 
while maximizing the predictive and descriptive power of 
our features. 
 Finally, the interpretability metric used in evaluating 
features could be further refined to better reflect prior 
beliefs.  That is, some features may gain or lose 
interpretability when combined with others (e.g. day of 
week and time of day: doing homework at midnight on 
Monday is very different from midnight on Friday).  This 
is yet another lever that could be used to guide our search. 

Conclusions  

The main goal of this work was to automatically discover 
useful, complex features in the context of educational data 
mining.  These features would at once elucidate the 
underlying structure of the raw data to the researcher, 
while at the same time hiding the complexity of this atomic 
structure from the model so that the features could be fed 
into even simple, robust models without introducing 
intractable complexity.  This goal was achieved.   
 In addition, by finding more complicated features that 
are still based on intuitive raw features, we produce models 
that are descriptive, but still interpretable and 
understandable.  Thus we work not only towards models 
with better performance, but also towards the perhaps more 
important goal of furthering scientists’ understanding of 
the features and relationships underlying the processes they 
are investigating (Schwabacher and Langley 2001).    
 We also found that finding novel, useful features is a 
difficult task.  We used the competing biases of 
predictiveness and interpretability to guide our search 
through the feature space, while staying keenly aware of 
the trade-off between these two goals.  Namely, 
predictiveness is useful, but often times not readily 
conductive to semantic or scientific parseability.  And 
interpretability, while more likely to be incorporated by 

scientists into theory, if not predictive, may actually move 
the state of the art backwards.  A key result of this work 
was finding a way to incorporate and balance these 
competing goals.  Specifically, interpretability was 
enforced by carefully partitioning the feature space in 
terms of the semantics of the initial features before the 
search began, and predictiveness was preserved by 
incorporating R

2
 into the score used in pruning the 

candidate features. 
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