
Feature Discovery in the Context of Educational Data Mining:

An Inductive Approach

Andrew Arnold, Joseph E. Beck, Richard Scheines

Machine Learning Department

Carnegie Mellon University

5000 Forbes Avenue, Pittsburgh, PA 15213, USA

{aarnold@cs, joseph.beck@cs, scheines@andrew}.cmu.edu

Abstract

Automated learning environments collect large amounts of
information on the activities of their students.
Unfortunately, analyzing and interpreting these data
manually can be tedious and requires substantial training
and skill. Although automatic techniques do exist for
mining data, the results are often hard to interpret or
incorporate into existing scientific theories of learning and
education. We therefore present a model for performing
automatic scientific discovery in the context of human
learning and education. We demonstrate, using empirical
results relating the frequency of student self-assessments to
quiz performance, that our framework and techniques yield
results better than those available using human-crafted
features.

Introduction and Previous Work

One of the fundamental goals of scientific research is the
modeling of phenomena. In particular, we are interested in
examining the data produced by students using an on-line
course. Intuitively, researchers believe many interesting,
and potentially useful trends and patterns are contained in
these logs. Researchers usually begin with some general
idea of the phenomenon they would like to understand, and
then proceed to collect some observations of it. The
scientist, for example, might have some prior belief, based
on existing scientific theory and intuition, that the amount
of time a student spends reading course notes will affect
his performance on quizzes, but is not able to specify
exactly what he means by “time reading notes.” Is it the
cumulative number of minutes, split into any number of
sessions, conducted under any condition, prior to the
evaluation that matters? Or is the intensity of the reading
more important? Is it better to read the notes right before
the quiz, for higher recall, or perhaps an earlier viewing
helps prime the student for learning? Unfortunately,
researchers have neither the time nor patience to go
through all these logs, by hand, to find ideal instantiations
of their features. In this work, we develop a partial
solution to this problem of feature discovery that uses a
computer to intelligently induce higher-level features from
low-level data.

 Although computers can produce copious log data, the
unstructured, low-level nature of these data unfortunately
makes it difficult to design an algorithm that can construct
features and models the researcher and his community are
interested in and can understand. In fact, the complexity of
a full search of the feature space, from a statistical point of
view, would depend on the size of the sufficient statistics
of the entire data set. Thus, for all real-world problems,
brute force search is intractable.
 A more insidious problem, however, is that even if the
space of features were able to be enumerated and searched
efficiently, the number of possible models based on those
features would be even larger, and any attempt at learning
a true model would suffer from overfitting and the curse of
dimensionality. Although techniques do exist for
addressing this issue, many do not take into consideration
the semantics of the features, instead relying on an
estimation of complexity. It turns out that by carefully
limiting the types of features that we can represent and
search, we reduce our search and overfitting problems
without, hopefully, cutting out too many expressive
features.
 Certain techniques do exist for addressing feature
selection. Principle component analysis (PCA) (e.g.
Schölkopf, Smola, and Müller 1998), for example, finds a
projection of the data from a higher dimensional space to
one with fewer dimensions. This projection reduces the
number of features needed to represent the data.
Unfortunately, these projections distort the original,
presumably intuitive, definition of the features of the data
into linear combinations of these features. In this process,
much of the interpretability of the resulting models is
sacrificed. This weakness is present in many of the other
methods used for feature selection and dimensionality
reduction, such as clustering and kernel methods (Jain,
Duin, and Mao 2000). All suffer from a sacrifice of
interpretability which has been shown to be essential if
computational techniques should ever have a serious
impact on the progress of scientific research (Pazzini,
Mani, and Shankle 2001). These are the problems this
research tries to solve.

Figure 1. Feature creation flow diagram

 It is important to note that we face two distinct
problems, each of which is challenging in its own right.
The first is defining and searching through the large space
of possible features. The second is constraining that
feature space and biasing the search to discover new
features that improve predictiveness while still preserving
the semantics of the original features. To achieve these
goals we begin with a relatively small set of core features,
defined in terms of the raw data, and grow this set, through
an iterative process of feature creation, scoring, and
pruning. At each iteration the predictiveness of the model
based on the features is increased, while the scientific and
semantic interpretability of the features themselves is
hopefully preserved. Via this semi-greedy process of
growing and pruning we are able to discover novel, non-
intuitive features without the burden of a brute-force
search.

System architecture (overview)

Figure 1 shows a high level diagram of the cyclical flow of
data through the feature creation process and provides the
outline for the structure of the paper. The arrows represent
processes, and the items in italics are the inputs and results
of those processes. We begin with the initial features of

the raw data, and iteratively grow candidate features via
prediction and calculation, and then prune these candidates
down to create a new generation to begin the process
again. Each completed cycle represents one iteration of
the algorithm. The process continues until a user-defined
stopping condition is met, e.g. elapsed computation time,
R

2
 of discovered model, or number of features discovered.

Models

The basic idea behind our approach is to search for
complicated features and put them into a simple model,
rather than putting simple features into complicated
models. Since our search complexity is taking place in
feature space, we use the simple linear and logistic
regression frameworks to model the interaction between
these features and our outcome variables.

Experiment

To demonstrate our approach, we provide a case study.
We looked at whether we could discover complex
predictive and interpretable features from raw data, given
an appropriate model. Specifically, we tried to learn
features that would help predict the student’s quiz score.

No:

Iterate

Again

Yes

Met Stopping

Criteria?

Table 1. Atomic features

NAME DESCRIPTION

User_id (Nominal) Unique user identifier

Module_id (Nominal) Unique module identifier

Assess_quiz (Ordinal) Number of self-assessment

quizzes taken by this user in this module

Assess_quest (Ordinal) Number of self-assessment

questions taken by this user in this module.

Each self-assessment quiz contains multiple

self-assement questions.

Quiz_score (Ordinal) (Dependent variable) % of quiz

questions answered correctly by this student

in this module. In each module, students

were given the chance to take the quiz up to

three times. The max of these trials was

taken to be quiz_score.

Raw Data

We began with real data collected from students
participating in the Open Learning Initiative
[http://www.cmu.edu/oli/]. The raw data from the logging
software, which records events on a second by second
scale, is then aggregated into a table of atomic module-
level features. These features are summarized in Table 1
and a sample is shown in Table 2. For the first iteration,
the raw data itself is taken as the initial set of features.

Table 2. Sample raw data

User_id

Module_id

 Assess

 quiz

Assess

quest

 Quiz

score

Alice module_1 12 27 86

Bob module_1 14 31 74

Alice module_2 18 35 92

Bob

module_2

13

 25

 87

Predicates

A predicate is a logical statement that is applied to each
row of the raw data and selects the subset of that data
which satisfies it. The process of filtering the raw data into
subsets in this way is called predication. The idea is that
these subsets would form the basis of each new feature.
We group certain data points together into clusters, based
on their attributes, and calculate features over these
subsets. For example, if we had the predicate:
User_id=Alice, rows one and three would be selected.
We could likewise filter on User_id=Bob. By thus
predicating on each unique value of a field (in this example

Alice and Bob are the only unique values of the field
User_id), we can completely partition the data easily
and automatically.

Calculators

Once a predicate has been applied to the raw data, a
function can be applied to the resulting filtered subset. We
call these functions calculators. These calculators are a
way of distilling our instance space (a subset of training
examples) into their constituent summary statistics. This
compression of the space allows us to search it more
efficiently. A calculator can perform various operations
over the fields of the selected data. For instance, we might
define a calculator that returned the mean of the
Assess_quiz field. Or we could define a count calculator
that simply returned the number of rows in the subset
selected by the predicate. A calculator can be defined to be
applicable to any field, a certain field, or a class of fields.
The specific definition of these calculators is guided by
domain knowledge. For instance, educational research
theory may say that timing-effects follow a log-scale
decay. Thus, instead of a simple subtraction calculator, we
may look at log(difference). The strength of our technique
is that it searches through this space of calculators
automatically and suggests those that seem the best. Table
3 presents a summary of the calculators used in our
experiments.

Table 3. Calculators used in our study

NAME DESCRIPTION

Mean Calculates the mean over any ordinal feature

Sum Calculates the sum over any ordinal feature

 Max Calculates the max over any ordinal feature

Min Calculates the min over any ordinal feature

Candidate features

Once we have applied our calculator to the filtered data,
the result is a new feature. This feature is precisely, and
entirely, defined by the predicate and calculator that
produced it. Given this formulation of the feature space as
a series of predications and calculations, we have a large
set of features that we can express. For example, if we
partitioned the data by predicating on Module_id = 1, and
Module_id = 2, and then applied the mean calculator to the
assess_quiz field, we would create a new feature
describing the mean number of assessment quizzes taken
within the module. In terms of the sample data given
before, this feature, F: mean_assess_quiz, would look like
Table 4.

Table 4. Feature construction over sample data

X1:

User_id

X2:

Module_id

X3:

 Assess

 quiz

F:

Mean

Assess

Quiz

 Y:

Quiz

Score

Alice module_1 12 13 86

Bob module_1 14 13 74

Alice module_2 18 15.5 92

Bob module_2 13 15.5 87

 The feature can then be evaluated for fitness, based on
the model being used, and then either be discarded, or
incorporated into the data. This process continues
iteratively, with new features being appended to the data
set after each round, and becoming atomic features in the
next round from which to create ever more complicated
features. It is important to note that, although the space of
representable features is large, it is by no means complete.
For instance, our system of predicates and calculators
could not express the feature “mean assessment quizzes for
students whose name starts with an ‘A’” or even the
simpler feature “mean of assessment quizzes which were
less than 15.” By avoiding such freer, even arbitrary,
feature construction we hope to bias the search space
towards useful and interpretable results.

Scoring & Pruning

The naïve approach to discovering new features would be
to exhaustively split the data based on all instantiations of
the predicates, and then apply all calculators to all the
subsets created by those predicates. The problem with this
solution, as mentioned before, is that because of the joint
nature of the search, its complexity is very large in the
number of features. Since we want to create an iterative
method that can search deeply into the feature space, this
approach will quickly blow-up and become intractable.
 Our solution is two-fold: first, the atomic features are
segmented into semantically similar groups of features. For
example, all user-related features (such as the user’s id,
school, section, age, etc) are put into a logical bucket.
Similarly for all course related features, module related
features, etc. Then, the algorithm is applied greedily to
each bucket, independently. This segmentation not only
avoids the joint search problem but also prevents the
creation of less interpretable and more unlikely features
like “mean assess quizzes for math modules on Fridays.”
It may also, of course, exclude other more interpretable
and likely features. These buckets reduce the search space
by limiting certain types of interactions. It is up to the user
to decide how he wants to bias the space to balance the
trade-off between a tractable search and an expressive
feature space.
 After this step the b-best features are returned from each
bucket, and then they are incorporated as candidate
features into the next step of the algorithm. In this way,

the algorithm is able to explore both broadly and deeply,
but with enough bias so as not to become mired in
intractability. In practice, b is a parameter that can be
tuned to balance this tradeoff and can have different values
for different bucket types.
 Additionally, since we are dealing with a multivariate
feature selection problem, we also consider correlation
between features. We use Fast Correlation-Based Filtering
to heuristically find the subset of features that minimize the
correlation between features while maximizing the R

2
 of

the resulting joint multivariate model (Yu and Liu 2003).
Decoupling correlated features is particularly important
since one of the strengths of our automated approach is the
ability to examine many similar, but distinct feature
formulations. This similarity creates many highly
correlated features that, when combined, can lead to brittle,
unstable features and models if not properly addressed. In
addition, removing correlated features significantly reduces
the size of our search space without discarding too much
information.
 Second, features are graded on predictiveness and
interpretability. We use R

2
to measure predictiveness.

However, there is no standard technique to measure
interpretability. Therefore we use heuristics such as
measuring the depth of nesting of the feature, in addition to
the specific predicates, calculators, and component features
used in the new features creation. We also look at the
length of a feature’s name was, with longer names
implying less interpretability. These are all combined to
calculate an interpretability score. After each iteration, the
features are scored in this manner, and the k features with
the best score are graduated to the next iteration, while the
rest are pruned away. Selecting a value for k depends on a
number of factors including the desired running time of the
algorithm, the memory available and the type of features
being searched for. Given a certain allotted running time,
smaller k will produce deeper searches, while larger k will
force shallower ones.
 We should point out that the specific terms and criteria
used in formulating the interpretability score are another
critical area in which we can incorporate and apply the
theory already developed by the educational research
community. For example, one can develop a semantic
taxonomy that prescribes the relative interpretability of
different combinations of features, based on existing
literature or explicitly stated scientific hypotheses. This
taxonomy can then be applied to the initial features.
Similarly, but perhaps less expensively, active learning
could be used to propose a feature to a user who would
provide feedback as to the feature’s interpretability.
Leveraging such existing knowledge is vital to the mission
of this work, as it has been shown that the results of
automated learning methods tend not to be incorporated by
the communities they serve, despite their statistically
demonstrated predictiveness, if the community does not
feel that its existing corpus of study has been used as a
starting point for the work (Pazzini, Mani, and Shankle
2001). In other words, science is an iterative process, with

the results of previous experiments informing not just the
interpretation, but also the design and execution of
subsequent studies. It would not make sense, therefore, for
machine learning techniques always to be applied de novo.
One of the crucial elements of this algorithm is the degree
to which it allows for the leveraging and systematic
inclusion of existing scientific knowledge, as we have seen
in terms of defining domain specific predicates and
calculators, along with equally tailored measures of
predictiveness and interpretability.

Iteration & Stopping Criteria

After the best features have been selected, and the rest
pruned away, we assess the overall fitness of the model. If
it satisfies user-set criteria (e.g. cross validation
performance, or a hard cap on the number of iterations or
processor time) the process stops and returns the current
set of discovered features. If the stopping conditions are
not met, the process continues again, with the current set of
features becoming the initial set of features for the next
iteration of feature exploration.

Results

Our experiment had two main goals: a machine learning
goal of finding features which were predictive of student
performance, and a scientific discovery goal of finding
interpretable features which took into account existing
knowledge and bias. For each of 24 students, for each of
15 modules, we collected the three atomic features user_id,
assess_quiz, and assess_quest. We also collected the
student’s quiz_score for that module as an outcome
variable. Since not every student completed every module,
we were left with 203 data points.

Machine Learning

For this part of the experiment, we began by randomly
splitting the data into two subsets: 80% of users into

training data, and 20% of users into testing data. We
decided it was important to split the data by user since
observations of the same user are highly correlated and
non-independent. We then applied one iteration of our
algorithm to the training data, as described in Table 1,
which returned a set of k = 7 features deemed the most
predictive and interpretable. Since we only looked at one
type of data (module level) there was no need to set a b
parameter. The algorithm took about 30 minutes to finish
on a P4 3 GHz machine with one gigabyte of memory.
Our algorithm then trained a linear regression model with
these seven features to predict quiz_score. The results of
this training process were two: first, the features’
definitions, which include the name of the predicate used
to subset the data, and the calculator used to score the data,
thus producing a feature. The second product was the
parameters of the linear model trained on these features of
the training data. The learned feature definitions were then
instantiated over the held-out testing data, and plugged into
a linear model using the trained parameters. We also
considered a baseline model, which we defined as a linear
model trained using the initial seed features of the raw
data, before any feature creation was performed. This was
to give us a comparison of the improvement gained by
using our technique. We then recorded and compared the
cross-validation R

2
 of both models. The results are

summarized in Table 5.
 The important thing to note here is that these features
were discovered automatically. Our algorithm discovered
features that, together, explained over 38% more of the
variance of unseen data relative to what was possible with
just the initial, raw features. This improvement is
important because an algorithm that found scientifically
interpretable, but predictively meaningless features would
be of little value. In order for our technique to be useful, it
must increase our ability to explain performance, not just
semantically, but also quantitatively, in this case by
increasing the variance explained.

Table 5. Summary of features and their linear regression coefficients for both the baseline and discovered model.

Cross validation R
2
 is also included.

Model Cross Validation R
2
 Features in model Beta

Baseline 7.46 cumulative_assess_quests -0.08

 cumulative_assess_quizzes 0.92

Discovered 10.35 cumulative_assess_quests -2.06

 cumulative_assess_quizzes 3.73

 mean_assess_quests_per_user -2.82

 mean_assess_quizzes_per_user 4.55

 max_assess_quests_per_user -1.22

 max_assess_quizzes_per_user -3.06

 min_assess_quests_per_user 2.59

Scientific Discovery

For this part of the evaluation, we took a closer look at the
semantic interpretation of the features discovered. For our
algorithm to be valid, it should both reinforce our existing
beliefs about which factors predict student performance,
and also suggest new features that we have either had
intuition about, but not been able to formulate precisely in
terms of the raw data, or which we have never considered
before. Details matter. Although the high level idea of
measuring frequencies of self-assessment questions and
quizzes is common across the features examined, the key
difficulty is how to extract the signal from the noise.
 In this experiment, mean_assess_quizzes_per_user is
such a specific definition of an intuitive feature.
Semantically, this feature could represent the average
“introspectiveness” of a given user. That is, the number of
self-assessment quizzes a student takes, on average,
compared to his classmates, could give an index into that
student’s propensity for evaluating himself. He might take
more assessments if he feels insecure in his mastery of the
material. This model would suggest a negative correlation
with quiz_score, that is, the less mastery a student has, the
more assessments he takes, and the poorer his final quiz
score. We might further reason that assess_quests would
have the same type of effect, in this case, negative. In fact,
this is the opposite of what we find: in our learned model,
the beta of mean_assess_quizzes_per_user has the opposite
sign of the beta for mean_assess_quests_per_user.
Although we cannot be sure of the interpretation of these
signs since it is a multivariate model, the fact that they are
opposite is significant. Could it be that this is where our
intuition failed us, leading us to conflate the two, distinct
phenomena: a student choosing to take an assessment quiz,
and then deciding how many of those quiz questions to
answer?
 Thus, presented with this evidence, an educational
researcher might be forced to rethink his theory: perhaps
those students who are most motivated to study, are also
most motivated to evaluate their mastery. They keep
reviewing the material until they perform well on the self-
assessments, and only then proceed to the final quiz, on
which they also do well. Another plausible hypothesis is
that taking self-assessment quizzes actually helps students
master the material, which leads to better final quiz
performance. It is important to note that these features and
their correlations to performance only suggest possible
predictive relationships, not causal links. They quantify
the definition of semantic features in terms of the raw data,
which is a critical prerequisite for the design and
implementation of further experiments by the researcher to
fully investigate these proposed models, including
distinguishing causation and correlation.

Generality

These results are not limited to the specific data or problem
presented in this paper. We have applied our same
framework and algorithm to an entirely separate data

source and problem, and produced equally significant
results (discovering the degree to which tutor interventions
affect the reading comprehension performance of students,
and how this effect varies over time). The fact that we did
not have to substantially change the mechanics of the
algorithm, or our methods for creating and evaluating
features, shows not only the generality of our approach, but
also its utility, as it was able to produce useful results in a
domain for which it was not intended.

Future Work

As we move towards data with possibly more complicated
underlying structure, we may need to incorporate more
atomic features and more iterations of feature formation.
Since the running time of our algorithm is very large in the
number of features, this expansion raises the very
immediate specter of intractability. To this end, we will
need to further develop methods for guiding and limiting
the exploration of the predicate and calculator space.

Limitations

In this work we have only looked at a relatively small
(four) number of initial features and calculators. This
investigation was adequate to demonstrate our algorithm’s
theoretical utility. In practice, however, people are
interested in data sets with many more initial features. The
techniques we have used to limit the feature space, such as
semantic feature segmentation, will need to be expanded to
deal with the increase in search space associated with more
features and calculators. Similarly, as the number of data
points increases, so too does the number of predicates that
can be formed, further increasing the number of candidate
features to be constructed and evaluated. As the
algorithm’s search space increases, new search strategies
will need to be developed. A greedy search based on a
relatively simple score, such as the one presented here,
may not be sufficiently powerful to distinguish the few
choice features from the increasingly numerous distractors.
Although we have achieved promising results in the
investigation presented here, as well as in the preliminary
examination of a separate data set, more studies will be
needed to establish the generality of our approach.

Better & Faster Search

Now that we have established that predictive features
requiring relatively few iterations of generation and
pruning can be discovered, we need to demonstrate that
more complicated features can be discovered from real
data. Specifically, we are interested in searching both
more widely within each partition of features (that is,
increasing the breadth of candidate features considered by
pruning fewer features in each iteration) and more deeply
(that is, running more iterations). Obviously, each small
increase in either of these dimensions greatly increases the
number of calculations needing to be performed. One
mitigation of this increase would be the construction of

decomposable feature scores, that is, scores that do not
have to be computed de novo for each feature, but instead
could be composed of other, already calculated feature
scores. This simplification would allow us to incorporate
more features into the search, while only incurring an
incremental increase in running time. Another idea is to
develop a stronger theoretical foundation for the definition
of our feature space. A smoother parameterization, along
with more theoretical insight, could allow for the
application of more efficient search techniques such as
gradient ascent. This would also allow the incorporation of
data with more initial attributes, more data points, and the
incorporation of more calculators.

More Interpretable Features

Along these same lines, more intelligent partitioning of the
feature space could reduce complexity while also
increasing the quality of the features returned. Since this
partitioning is one of the key biases we have into the
search space, it is important to explore different ways of
dividing features so as to minimize search complexity
while maximizing the predictive and descriptive power of
our features.
 Finally, the interpretability metric used in evaluating
features could be further refined to better reflect prior
beliefs. That is, some features may gain or lose
interpretability when combined with others (e.g. day of
week and time of day: doing homework at midnight on
Monday is very different from midnight on Friday). This
is yet another lever that could be used to guide our search.

Conclusions

The main goal of this work was to automatically discover
useful, complex features in the context of educational data
mining. These features would at once elucidate the
underlying structure of the raw data to the researcher,
while at the same time hiding the complexity of this atomic
structure from the model so that the features could be fed
into even simple, robust models without introducing
intractable complexity. This goal was achieved.
 In addition, by finding more complicated features that
are still based on intuitive raw features, we produce models
that are descriptive, but still interpretable and
understandable. Thus we work not only towards models
with better performance, but also towards the perhaps more
important goal of furthering scientists’ understanding of
the features and relationships underlying the processes they
are investigating (Schwabacher and Langley 2001).
 We also found that finding novel, useful features is a
difficult task. We used the competing biases of
predictiveness and interpretability to guide our search
through the feature space, while staying keenly aware of
the trade-off between these two goals. Namely,
predictiveness is useful, but often times not readily
conductive to semantic or scientific parseability. And
interpretability, while more likely to be incorporated by

scientists into theory, if not predictive, may actually move
the state of the art backwards. A key result of this work
was finding a way to incorporate and balance these
competing goals. Specifically, interpretability was
enforced by carefully partitioning the feature space in
terms of the semantics of the initial features before the
search began, and predictiveness was preserved by
incorporating R

2
 into the score used in pruning the

candidate features.

References

Jain, A., Duin, R., and Mao, J. (2000). Statistical Pattern
Recognition: A Review. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(1):4--37.

Pazzani, M. J., Mani, S., Shankle, W. R. (2001).
Acceptance of Rules Generated by Machine Learning
among Medical Experts. Methods of Information in
Medicine, 40:380--385.

Schölkopf, B., Smola, A.J., Müller, K.-R. (1998).
Nonlinear component analysis as a kernel eigenvalue
problem. Neural Computation, 10:1299-1319.

Schwabacher, M., and Langley, P. (2001). Discovering
Communicable Scientific Knowledge from Spatio-
Temporal Data. In Proceedings of The Eighteenth
International Conference on Machine Leaning, 489--496.

Sirovitch, L. and Kirby, M. (1987). Low-Dimensional
Procedure for the Characterization of Human Faces.
Journal of the Optical Society of America, 2:519--524.

Yu, L. and Liu, H. (2003). Feature Selection for High-
Dimensional Data: A Fast Correlation-Based Filter
Solution. In Proceedings of The Twentieth International
Conference on Machine Leaning, 856--863.

