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The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from
two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the
transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/
macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very
early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF
receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription
factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific
PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter.
Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site
in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this
site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell
lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These
results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the
expression of a receptor for a key macrophage growth factor.

The 150-kDa receptor of the macrophage colony-stimulat- direct M-CSF receptor tissue-specific expression in the two
ing factor (M-CSF) receptor is encoded by the c-fins proto- different tissues (29). In monocytes, transcription initiates at
oncogene, the cellular counterpart of the Susan McDonough  multiple sites immediately upstream of the start codon ATG.
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expression of a receptor for a key macrophage growth factor.

The 150-kDa receptor of the macrophage colony-stimulat- direct M-CSF receptor tissue-specific expression in the two
ing factor (M-CSF) receptor is encoded by the c-fins proto- different tissues (29). In monocytes, transcription initiates at
oncogene, the cellular counterpart of the Susan McDonough  multiple sites immediately upstream of the start codon ATG.

—rmm i e Al . BNl e . B - IAEN Lp o -




The Problem

e What we are able to do:

— Train on large, labeled data sets drawn from same distribution
as testing data

e What we would like to be able do:

— Leverage large, previously labeled data from a related domain

* Transfer learning:
— Domain we're interested in (data scarce): Target
— Related domain (with lots of data): Source

* How we planto doit:

— Isolate features with similar distributions across domains
e Use feature space’s inherent structure to find these similarities
e Spread this information using carefully constructed priors



Motivation

* Why is transfer important?

— Often we violate non-transfer assumption without realizing. How much data is
truly identically distributed (the i.d. from i.i.d.)?

e E.g. Different authors, annotators, time periods, sources

— Large amounts of labeled data/trained classifiers already exist
 Why waste data & computation?
* Can learning be made easier by leveraging related domains/problems?

— Life-long learning

e Why is structure important?

— Need some bias as to how different domains’ features
relate to one another

e Why are priors important?
— Small bits of selective knowledge

e Guide learning algorithms
o Still relatively inexpensive



What we are able to do:

Supervised learning

— Train on large, labeled data sets drawn from same
distribution as testing data

— Well studied problem

Training data: Test:

oo T o .

Dear William, _
Hi Carall

Can you please tell Richard to give Bin the notes fram class?

Thanks Flease let me know when you and Jim are meeting for lunch.

Andrew Thanksl

=

Test:
Train:

Reversible histone acetylation changes
the chromatin structure and can
modulate gene transcription. Mammalian
histone deacetylase 1 (HDAC1)

The neuronal cyclin-dependent kinase
p35/cdk5 comprises a catalytic subunit
(cdk5) and an activator subunit (p35)




What we would like to be able to do:

* Transfer learning (domain adaptation):
— Leverage large, previously labeled data from a related domain

e Related domain we’ll be training on (with lots of data): Source

 Domain we’re interested in and will be tested on (data scarce): Target
— [Ng’06, Daumé 06, Jiang '06, Blitzer ‘06, Ben-David '07, Thrun '96]

Train (source domain: E-mail): Test (target domain: IM):

Etns iir =

Dear William, :a:arnnlﬂ:w::uhen Instant Message
File Edit Insert People

Can you please tell Richard to give Bin the notes fram class?

— ) . .
Thanks. @ aarnold: : hey, can vou ask rick to give bin the notes?

aim
Andrew

Test (target domain: Caption):
Train (source domain: Abstract):

Neuronal cyclin-dependent kinase

The neuronal cyc_lm-depende_nt kmase_: p35/cdk5 (Fig 1, a) comprises a catalyti¢
p35/cdk5 comprises a catalytic subunit .

4k5) and tivat bunit (035 subunit (cdk5, left panel) and an
(cdk5) and an activator subunit (p35) activator subunit (p35, fmi #4)




What we’d like to be able to do:

e Transfer learning (multi-task):
e Same domain, but slightly different task
e Related task we’ll be training on (with lots of data): Source
e Task we're interested in and will be tested on (data scarce): Target

— [Ando’05, Sutton '05]

Train (source task: Names):

oo T

—rr

Test (target task: Pronouns):

Dear William,
Can you please tell Richard to give Bin the notes fram class?
Thanks,

Andrew

Hi Caroll
Flease let me know when you and Jim are meeting for lunch.

Thanks!

Train (source task: Proteins):

Test (target task: Action Verbs):

The neuronal cyclin-dependent kinase
p35/cdk5 comprises a catalytic subunit
(cdk5) and an activator subunit (p35)

Reversible histone acetylation changes
the chromatin structure and can
modulate gene transcription. Mammalian
histone deacetylase 1 (HDAC1)




The Features

A55. M O Span death’ =tokens 1201271 in 536_483r4313 _Or0r608_genia_ 1480 6536 _G83rd313 4707608 _aenia_
[Class: MEG1.0] Span 'domain'=tokens 121122 in 536_98374313_9707608_genia_148004536_ 98374313 9707608 _genis
[Class: MEG 1.0] Span ‘interacting' = tokens 122123 in 536983742113 _9707608_genia_1480 b4536_98374313_9V076E08_ge
[Class: MEG 1.0] Span protein'=1okens 123124 in 536_98374313_487076028_genia_1480 tdr536_09837421 3_070FE08_genia

[Clags: protUnigque 1.0] Span TRADD' = tokens 124125 in 536_98374313_9707608_genia_1480 0453698374513 _9707E0E

|/Features Source | Subpopulation

to TMFRI in associating with the THMFRI death domain interacting protein TRADD |
THFERI has been recently shown to activate NF|

l/Features |/ Source r Subpopulation

Class label: [ClassLabel: {NEG=1.0}]
Feature Mame Weight

previouslabel 1 MEG
tokens.eq.charTypePattern.x+

tokens. eq.lc.protein
leftiokenten_1.eq.charTypeFatiern .+
lefttokentled_1.eq.lc.interacting
[efttokenten 2 eq.charTypePatiern .+
leftiokenten 2.eqlc.domain
lefttakentleg _3.eq.charTypePattern.x+
lefttokenten_3.eq.lc.death
tighttoken_0.eq.charTypePattern. <+
right.token_0.eq.lc.tradd
right.token_1.eq.charTypePattern..
tightioken_1.eq.lc..

righttoken_2 eq.charTypePattern X+
right.token_2.eq.lc.tnfri

_— | | | | | | | | e e | | |
olololooo|loololololo|lo|lo|o




Feature Hierarchy

Sample sentence:

Give the book to Professor Caldwell

Examples of the feature hierarchy:

LeftToken.*

LeftToken.IsWord.*
LeftToken.IsWord IsTitle. *
LeftToken.IsWord.IsTitle.equals.™
LeftToken.IsWord.IsTitle.equals.mr

Hierarchical feature tree for ‘Caldwell’;

direction

e

distance

1 T ..

.
"

value
Professor_—

"

e

book~__

true false

L w R

10



Hierarchical prior model (HIER)

(Y Le
S \_/ w2 N

 Top level: z, hyperparameters, linking related features
 Mid level: w, feature weights per each domain
e Low level: x, y, training data:label pairs for each domain



Hierarchical prior model (cont.)

Conditional likelihood of data: P(ylx,w,z) =

. . . . D My - B
L|'keI|hood of data in each domain, {H T P(y};ﬂX};{}.Ar}ﬂ}}
given domain’s model parameters: d=1k—1
Likelihood of each model parameter D Fa & B
. . . . P bt H H N t’}\f’ |"'pﬂ['f':'-’”".l' 1)
in each domain’s given its parent’s el |
hyperparameter:

' N (znlzparn)- 1
Hyperparameters (without leaf nodes): {,1_ HI ; b ]}

—
— E—T'E.OT?. (=4 ]



Approximate algorithm & smoothing

) source __ Tsource /7 Source
Ill]]llt. D - (‘Xt-ruiﬂ. '}t'?‘tli:-'?!- )

Mtarget ~target «-target.
D - (‘Xt-ra-iﬂ. . train )

Feature sets Jﬂjsma-rceﬁ Fm-rget:
Feature Hierarchies Hseuree Htarget
Minimum membership size M

Smoothing feature weights across
entire tree can lead to over-
smoothing

— Joining unrelated features/domains

Train CRF using D" ¢ to obtain

feature weights A“°%"¢ .
For each feature f € JFtarget Instead, can adjust level

Tnitialize: node n = f of tree to smooth over

While (n ¢ H*ovree . o
or |L-E‘HVES(HEOW'CE(-”_}:|| < M) AISO minimum

and 7 # root (Htarget) membership size (M)
n «— Pa(H™"9¢ (n))
Compute /¢ 7 and o ¢ using the sample
{Aouree i € Leaves(H®"*(n)) }
Train Gaussian prior CRF using D79t as data
and {/.¢} and {o¢} as Gaussian prior parameters.
Output:Parameters of the new CRF At*"9¢?,

13



Models
e Conditional random field (CRF):

— Sequentially classify tokens, given context
— Breaks normal i.i.d. assumption

— Neighbors’ predicted class can influence my class

¥ Y i1

]

i—1

Y
O
X

i—1




Regularized models

e CRF with Gaussian prior (GAUSS):

N
. ,- (Aj — ,u
argimax E log pa(ye|xe) | — 3 E
A =1

* Instead of regularizing towards Zero

— Learn model A's on source data
— During target training

e Regularize towards source-trained N\'s (CHELBA)

ArgIax ppearges (Y| X) — BI|[ATOT96E - AsouTee)
Atarget



Data

Corpus | Genre | Task
UTexas Bio Protein
Yapex Bio | Protemn
MUC6 News | Person
MUC7 News | Person
CSPACE | E-mail | Person

<prot> p38 stress-activated protein kinase
</prot> inhibitor reverses <prot> bradykinin B(1)
receptor </prot>-mediated component of
inflammatory hyperalgesia.

<Protname>p35</Protname>/<Protname>cdk5
</Protname> binds and phosphorylates
<Protname>beta-catenin</Protname> and
regulates <Protname>beta-catenin </Protname> /
<Protname>presenilin-1</Protname> interaction.

e Corpora come from three genres:
— Biological journal abstracts

— News articles

— Personal e-mails

e Two tasks:
— Protein names in biological abstracts
— Person names in news articles and e-mails
e Variety of genres and tasks allows us to:

— evaluate each method’s ability to generalize across and incorporate
information from a wide variety of domains, genres and tasks

16



Experiments

e Compared HIER against three baselines:

— GUASS: CRF tuned on single domain’s data
e Standard N(O,1) prior

— CAT: CRF tuned on concatenation of multiple
domains’ data, using standard N(0,1) prior

— CHELBA: CRF model tuned on one domain’s data,
using prior trained on different, related domain’s data

e Since few true positives, focused on:

F1:=(2 * Precision * Recall) / (Precision + Recall)



Results: Intra-genre, same-task transfer

0.7
0.6
0.5
~ 04
03 (a) GAUSS: tuned on MUC6 +
o (b) CAT: tuned on MUC6+7
0.2 £ (c) HIER: MUC6G+T7 prior, tuned on MUCGE  *
I

m'.(d} CHELBA: MUCG+7 prior, tuned on MUCs O

0 20 40 60 80 100

Percent of target-domain data used for tuning

0.1

— Adding relevant HIER prior helps compared to GAUSS (c > a)
— Simply CAT’ing or using CHELBA can hurt (d = b < a)
— And never beat HIER (c > b = d)



Results: Inter-genre, multi-task transfer

|
09 (e) HIER: MUC6+7 prior, tuned on MUCS6

¢ (f) CAT: tuned on all domains
(g) HIER.: all domains prior, tuned on MUCS
(h) CHELBA: all domains prior, tuned on MUCHE

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Fl

0 20 40 60 80 100

Percent of target-domain data used for tuning

— Transfer-aware priors CHELBA and HIER filter irrelevant data
— Adding irrelevant data to priors doesn’t hurt (e = g = h)
— But simply CAT’ing it is disastrous (f << e)



Results: Baselines vs. HIER

. ~ =
v e ]
N / e % e ﬁ—":
— 4k : Ve < =
< - " &) =
! & o
-
7k &
S ° N
' ‘e};
i Sw 7
0
0 2 4 6 8 1 o 2 4 6 8 1
HIER (F1) HIER (F1) HIER (F1)
ol i * MUC6@13% @ MUC6@m100% 4 CSPACE@13% ¢ CSPACE@100%
MUC6(@3% MUC6@25% ® CSPACE@3% v CSPACE@25%
b }'IT_.'C{‘]'"E, Bo4 M UCG'@ 50% & (C SPAE'E{-EE 6% * C SPACE-@ 50%

— Points below Y=X indicate HIER outperforming baselines
e HIER dominates non-transfer methods (GUASS, CAT)
e Closer to non-hierarchical transfer (CHELBA), but still outperforms



Conclusions & Future work

Hierarchical feature priors successfully

— exploit structure of many different natural language
feature spaces

— while allowing flexibility (via smoothing) to transfer
across various distinct, but related domains, genres
and tasks

Future work extends these methods to the semi-

supervised and unsupervised settings

Exploits structure not only in features space, but
also in data space

— E.g.: Transfer from abstracts to captions of papers
From Headers to Bodies of e-mails
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