Exploiting Feature Hierarchy for Transfer Learning in Named Entity Recognition

Andrew Arnold, Ramesh Nallapati, William W. Cohen Machine Learning Department Carnegie Mellon University

> ACL HLT Columbus, Ohio June 16, 2008

Domain: Biological publications

MOLECULAR AND CELLULAR BIOLOGY, Jan. 1994, p. 373–381 0270-7306/94/\$04.00+0
Copyright © 1994, American Society for Microbiology

Vol. 14, No. 1

The Macrophage Transcription Factor PU.1 Directs Tissue-Specific Expression of the Macrophage Colony-Stimulating Factor Receptor

DONG-ER ZHANG, CHRISTOPHER J. HETHERINGTON, HUI-MIN CHEN, AND DANIEL G. TENEN*

Division of Hematology/Oncology, Department of Medicine, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02115

Received 12 July 1993/Returned for modification 26 August 1993/Accepted 22 September 1993

The macrophage colony-stimulating factor (M-CSF) receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.

The 150-kDa receptor of the macrophage colony-stimulating factor (M-CSF) receptor is encoded by the c-fms protooncogene, the cellular counterpart of the Susan McDonough direct M-CSF receptor tissue-specific expression in the two different tissues (29). In monocytes, transcription initiates at multiple sites immediately upstream of the start codon ATG.

Problem: Protein-name extraction

MOLECULAR AND CELLULAR BIOLOGY, Jan. 1994, p. 373–381 0270-7306/94/\$04.00+0 Copyright © 1994, American Society for Microbiology

Vol. 14, No. 1

The Macrophage Transcription Factor PU.1 Directs Tissue-Specific Expression of the Macrophage Colony-Stimulating Factor Receptor

DONG-ER ZHANG, CHRISTOPHER J. HETHERINGTON, HUI-MIN CHEN, AND DANIEL G. TENEN*

Division of Hematology/Oncology, Department of Medicine, Beth Israel Hospital and Harvard Medical School, Boston, Massachusetts 02115

Received 12 July 1993/Returned for modification 26 August 1993/Accepted 22 September 1993

The macrophage colony-stimulating factor [M-CSF] receptor is expressed in a tissue-specific fashion from two distinct promoters in monocytes/macrophages and the placenta. In order to further understand the transcription factors which play a role in the commitment of multipotential progenitors to the monocyte/macrophage lineage, we have initiated an investigation of the factors which activate the M-CSF receptor very early during the monocyte differentiation process. Here we demonstrate that the human monocytic M-CSF receptor promoter directs reporter gene activity in a tissue-specific fashion. Since one of the few transcription factors which have been implicated in the regulation of monocyte genes is the macrophage- and B-cell-specific PU.1 transcription factor, we investigated whether PU.1 binds and activates the M-CSF receptor promoter. Here we demonstrate that both in vitro-translated PU.1 and PU.1 from nuclear extracts bind to a specific site in the M-CSF receptor promoter just upstream from the major transcription initiation site. Mutations in this site which eliminate PU.1 binding decrease M-CSF receptor promoter activity significantly in macrophage cell lines only. Furthermore, PU.1 transactivates the M-CSF receptor promoter in nonmacrophage cells. These results suggest that PU.1 plays a major role in macrophage gene regulation and development by directing the expression of a receptor for a key macrophage growth factor.

The 150-kDa receptor of the macrophage colony-stimulating factor (M-CSF) receptor is encoded by the c-fms protooncogene, the cellular counterpart of the Susan McDonough direct M-CSF receptor tissue-specific expression in the two different tissues (29). In monocytes, transcription initiates at multiple sites immediately upstream of the start codon ATG.

The Problem

- What we are able to do:
 - Train on large, labeled data sets drawn from same distribution as testing data
- What we would like to be able do:
 - Leverage large, previously labeled data from a related domain
 - Transfer learning:
 - Domain we're interested in (data scarce): Target
 - Related domain (with lots of data): Source
- How we plan to do it:
 - Isolate features with similar distributions across domains
 - Use feature space's inherent structure to find these similarities
 - Spread this information using carefully constructed priors

Motivation

- Why is transfer important?
 - Often we violate non-transfer assumption without realizing. How much data is truly identically distributed (the i.d. from i.i.d.)?
 - E.g. Different authors, annotators, time periods, sources
 - Large amounts of labeled data/trained classifiers already exist
 - Why waste data & computation?
 - Can learning be made easier by leveraging related domains/problems?
 - Life-long learning
- Why is structure important?
 - Need some bias as to how different domains' features relate to one another
- Why are priors important?
 - Small bits of selective knowledge
 - Guide learning algorithms
 - Still relatively inexpensive

What we are able to do:

- Supervised learning
 - Train on large, labeled data sets drawn from same distribution as testing data
 - Well studied problem

What we would like to be able to do:

Transfer learning (domain adaptation):

(cdk5) and an activator subunit (p35)

- Leverage large, previously labeled data from a related domain
 - Related domain we'll be training on (with lots of data): Source
 - Domain we're interested in and will be tested on (data scarce): Target
 - [Ng '06, Daumé '06, Jiang '06, Blitzer '06, Ben-David '07, Thrun '96]

activator subunit (p35, fmi #4)

What we'd like to be able to do:

- Transfer learning (multi-task):
 - Same domain, but slightly different task
 - Related task we'll be training on (with lots of data): Source
 - Task we're interested in and will be tested on (data scarce): Target
 - [Ando '05, Sutton '05]

The Features

[Class: NEG 1.0] Span 'death' = tokens 120:121 in 536_98374313_9707608_genia_1480.txt/536_98374313_9707608_genia_ [Class: NEG 1.0] Span 'domain' = tokens 121:122 in 536_98374313_9707608_genia_1480.txt/536_98374313_9707608_genia [Class: NEG 1.0] Span 'interacting' = tokens 122:123 in 536_98374313_9707608_genia_1480.txt/536_98374313_9707608_ge [Class: NEG 1.0] Span 'protein' = tokens 123:124 in 536 98374313 9707608 genia 1480.txt/536 98374313 9707608 genia [Class: protUnique 1.0] Span 'TRADD' = tokens 124:125 in 536 98374313 9707608 | denia 1480.txt/536 98374313 9707608 Features Subpopulation Source to TNFRI in associating with the TNFRI death domain interacting protein TRADD . TNFRI has been recently shown to activate NF Features Subpopulation Source Class label: [ClassLabel: {NEG=1.0}] Feature Name Weight previousLabel.1.NEG 1.0 tokens.eq.charTypePattern.x+ 1.0 1.0 tokens.eq.lc.protein left.tokenNeg_1.eq.charTypePattern.x+ 1.0 left.tokenNeg_1.eq.lc.interacting 1.0 left.tokenNeg_2.eq.charTypePattern.x+ 1.0 left.tokenNeg 2.eg.lc.domain 1.0 left.tokenNeg_3.eg.charTypePattern.x+ 1.0 1.0 left.tokenNeg_3.eq.lc.death right.token_0.eq.charTypePattern.X+ 1.0 right.token_0.eq.lc.tradd 1.0 1.0 right.token 1.eg.charTypePattern.. right.token_1.eq.lc.. 1.0 right.token_2.eq.charTypePattern.X+ 1.0 right.token_2.eq.lc.tnfri 9 1.0

Feature Hierarchy

Sample sentence:

Give the book to Professor Caldwell

Examples of the feature hierarchy:

LeftToken.*

LeftToken.IsWord.*

LeftToken.IsWord.IsTitle.*

LeftToken.IsWord.IsTitle.equals.*

Left Token. Is Word. Is Title. equals. mr

Hierarchical feature tree for 'Caldwell':

Hierarchical prior model (HIER)

- Top level: **z**, hyperparameters, linking related features
- Mid level: w, feature weights per each domain
- Low level: x, y, training data:label pairs for each domain

Hierarchical prior model (cont.)

Conditional likelihood of data:

$$P(\mathbf{y}|\mathbf{x}, \mathbf{w}, \mathbf{z}) =$$

Likelihood of data in each domain, given domain's model parameters:

$$\left\{ \prod_{d=1}^{D} \prod_{k=1}^{M_d} P(\mathbf{y}_k^{(d)} | \mathbf{x}_k^{(d)}, \Lambda^{(d)}) \right\}$$

Likelihood of each model parameter in each domain's given its parent's hyperparameter:

$$\times \quad \left\{ \prod_{d=1}^{D} \prod_{f=1}^{F_d} \mathcal{N}(\lambda_f^{(d)}|z_{\operatorname{pa}(f^{(d)})}, 1) \right\}$$

Hyperparameters (without leaf nodes):
$$\times \left\{ \prod_{n \in \mathcal{T}_{nonleaf}} \mathcal{N}(z_n|z_{\mathbf{pa}(n)},1) \right\}$$

Approximate algorithm & smoothing

```
Input: \mathcal{D}^{source} = (X^{source}_{train}, Y^{source}_{train})

\mathcal{D}^{target} = (X^{target}_{train}, Y^{target}_{train});

Feature sets \mathcal{F}^{source}, \mathcal{F}^{target};

Feature Hierarchies \mathcal{H}^{source}, \mathcal{H}^{target}

Minimum membership size M
```

Smoothing feature weights across entire tree can lead to over-smoothing

Joining unrelated features/domains

Train CRF using \mathcal{D}^{source} to obtain feature weights Λ^{source} For each feature $f \in \mathcal{F}^{target}$ Initialize: node n = f

While $(n \notin \mathcal{H}^{source})$ or $|\text{Leaves}(\mathcal{H}^{source}(n))| \leq M)$ and $n \neq root(\mathcal{H}^{target})$ $n \leftarrow \text{Pa}(\mathcal{H}^{target}(n))$

Compute μ_f and σ_f using the sample $\{\lambda_i^{source} \mid i \in \text{Leaves}(\mathcal{H}^{source}(n))\}$

Train Gaussian prior CRF using \mathcal{D}^{target} as data and $\{\mu_f\}$ and $\{\sigma_f\}$ as Gaussian prior parameters.

Output:Parameters of the new CRF Λ^{target} .

Instead, can adjust *level* of tree to smooth over

 Also minimum membership size (M)

Models

- Conditional random field (CRF):
 - Sequentially classify tokens, given context
 - Breaks normal i.i.d. assumption
 - Neighbors' predicted class can influence my class

Regularized models

• CRF with Gaussian prior (GAUSS):

$$\underset{\Lambda}{\operatorname{argmax}} \sum_{k=1}^{N} \left(\log \ p_{\Lambda}(\mathbf{y}_{k}|\mathbf{x}_{k}) \right) - \beta \sum_{j}^{F} \frac{(\lambda_{j} - \mu_{j})^{2}}{2\sigma_{j}^{2}}$$

- Instead of regularizing towards zero
 - Learn model Λ's on source data
 - During target training
 - Regularize towards source-trained Λ's (CHELBA)

$$\underset{\Lambda^{target}}{\operatorname{argmax}} \ p_{\Lambda^{target}}(Y|X) - \beta ||\Lambda^{target} - \Lambda^{source}||$$

Data

Corpus	Genre	Task
UTexas	Bio	Protein
Yapex	Bio	Protein
MUC6	News	Person
MUC7	News	Person
CSPACE	E-mail	Person

- <Protname>p35</Protname>/<Protname>cdk5
- </Protname> binds and phosphorylates
- <Protname>beta-catenin</protname> and
 regulates <Protname>beta-catenin </protname> /
 <Protname>presenilin-1/Protname> interaction.
- Corpora come from three genres:
 - Biological journal abstracts
 - News articles
 - Personal e-mails
- Two tasks:
 - Protein names in biological abstracts
 - Person names in news articles and e-mails
- Variety of genres and tasks allows us to:
 - evaluate each method's ability to generalize across and incorporate information from a wide variety of domains, genres and tasks

Experiments

- Compared HIER against three baselines:
 - GUASS: CRF tuned on single domain's data
 - Standard N(0,1) prior
 - CAT: CRF tuned on concatenation of multiple domains' data, using standard N(0,1) prior
 - CHELBA: CRF model tuned on one domain's data,
 using prior trained on different, related domain's data
- Since few true positives, focused on:
 - F1 := (2 * Precision * Recall) / (Precision + Recall)

Results: Intra-genre, same-task transfer

Percent of target-domain data used for tuning

- Adding relevant HIER prior helps compared to GAUSS (c > a)
- Simply CAT'ing or using CHELBA can hurt (d ≈ b < a)
- And never beat HIER (c > b \approx d)

Results: Inter-genre, multi-task transfer

Percent of target-domain data used for tuning

- Transfer-aware priors CHELBA and HIER filter irrelevant data
- Adding irrelevant data to priors doesn't hurt (e ≈ g ≈ h)
- But simply CAT'ing it is disastrous (f << e)

Results: Baselines vs. HIER

- Points below Y=X indicate HIER outperforming baselines
 - HIER dominates non-transfer methods (GUASS, CAT)
 - Closer to non-hierarchical transfer (CHELBA), but still outperforms

Conclusions & Future work

- Hierarchical feature priors successfully
 - exploit structure of many different natural language feature spaces
 - while allowing flexibility (via smoothing) to transfer across various distinct, but related domains, genres and tasks
- Future work extends these methods to the semisupervised and unsupervised settings
- Exploits structure not only in features space, but also in data space
 - E.g.: Transfer from abstracts to captions of papers
 From Headers to Bodies of e-mails

¿ Questions?

References

- Rie K. Ando and Tong Zhang. 2005. A framework for learning predictive structures from multiple tasks and unlabeled data. In JMLR 6, pages 1817 – 1853.
- Andrew Arnold, Ramesh Nallapati, and William W. Cohen. 2007. A comparative study of methods for transductive transfer learning. In Proceedings of the IEEE International Conference on Data Mining (ICDM) 2007 Workshop on Mining and Management of Biological Data.
- Jonathan Baxter. 1997. A Bayesian/information theoretic model of learning to learn via multiple task sampling. Machine Learning, 28(1):7-39.
- Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. 2007. Analysis of representations for domain adaptation. In NIPS 20, Cambridge, MA. MIT Press.
- John Blitzer, Ryan McDonald, and Fernando Pereira. 2006. Domain adaptation with structural correspondence learning. In EMNLP, Sydney, Australia.
- A. Borthwick, J. Sterling, E. Agichtein, and R. Grishman. 1998. NYU: Description of the MENE named entity system as used in MUC-7.
- R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney, A. Ramani, and Y. Wong. 2004. Comparative experiments on learning information extractors for proteins and their interactions. In *Journal of AI in Medicine*. *Data from* ftp://ftp.cs.utexas.edu/pub/mooney/biodata/proteins.tar.gz.
- Rich Caruana. 1997. Multitask learning. Machine Learning, 28(1):41–75.
- Ciprian Chelba and Alex Acero. 2004. Adaptation of maximum entropy capitalizer: Little data can help a lot. In Dekang Lin and Dekai Wu, editors, EMNLP 2004, pages 285–292. ACL.

- S. Chen and R. Rosenfeld. 1999. A gaussian prior for smoothing maximum entropy models.
- William W. Cohen. 2004. Minorthird: Methods for identifying names and ontological relations in text using heuristics for inducing regularities from data. http://minorthird.sourceforge.net.
- Hal Daumé III and Daniel Marcu. 2006. Domain adaptation for statistical classifiers. In Journal of Artificial Intelligence Research 26, pages 101–126.
- Hal Daumé III. 2007. Frustratingly easy domain adaptation. In ACL.
- David Fisher, Stephen Soderland, Joseph McCarthy, Fangfang Feng, and Wendy Lehnert. 1995. Description of the UMass system as used for MUC-6.
- Kristofer Franzén, Gunnar Eriksson, Fredrik Olsson, Lars Asker, Per Lidn, and Joakim Cöster. 2002. Protein names and how to find them. In International Journal of Medical Informatics.
- Yves Grandvalet and Yoshua Bengio. 2005. Semisupervised learning by entropy minimization. In CAP, Nice. France.
- Jing Jiang and ChengXiang Zhai. 2006. Exploiting domain structure for named entity recognition. In Human Language Technology Conference, pages 74 – 81.
- R. Kraut, S. Fussell, F. Lerch, and J. Espinosa. 2004. Coordination in teams: evidence from a simulated management game.
- John Lafferty, Andrew McCallum, and Fernando Pereira. 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. 18th International Conf. on Machine Learning, pages 282–289. Morgan Kaufmann, San Francisco, CA.

- S.-I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. 2007. Learning a meta-level prior for feature relevance from multiple related tasks. In Proceedings of International Conference on Machine Learning (ICML).
- Einat Minkov, Richard C. Wang, and William W. Cohen. 2005. Extracting personal names from email: Applying named entity recognition to informal text. In HLT/EMNLP.
- Rajat Raina, Andrew Y. Ng, and Daphne Koller. 2006. Transfer learning by constructing informative priors. In ICML 22.
- Bernhard Schölkopf, Florian Steinke, and Volker Blanz. 2005. Object correspondence as a machine learning problem. In ICML '05: Proceedings of the 22nd international conference on Machine learning, pages 776– 783, New York, NY, USA. ACM.
- Charles Sutton and Andrew McCallum. 2005. Composition of conditional random fields for transfer learning. In HLT/EMLNLP.
- M. Szafranski, Y. Grandvalet, and P. Morizet-Mahoudeaux. 2007. Hierarchical penalization. In Advances in Neural Information Processing Systems 20. MIT press.
- B. Taskar, M.-F. Wong, and D. Koller. 2003. Learning on the test data: Leveraging 'unseen' features. In Proc. Twentieth International Conference on Machine Learning (ICML).
- Sebastian Thrun. 1996. Is learning the n-th thing any easier than learning the first? In NIPS, volume 8, pages 640-646. MIT.
- J. Zhang, Z. Ghahramani, and Y. Yang. 2005. Learning multiple related tasks using latent independent component analysis.