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Abstract

We present a novel hierarchical prior struc-
ture for supervised transfer learning in named
entity recognition, motivated by the common
structure of feature spaces for this task across
natural language data sets. The problem of
transfer learning, where information gained in
one learning task is used to improve perfor-
mance in another related task, is an important
new area of research. In the subproblem of do-
main adaptation, a model trained over a source
domain is generalized to perform well on a re-
lated target domain, where the two domains’
data are distributed similarly, but not identi-
cally. We introduce the concept of groups
of closely-related domains, callegnres and
show how inter-genre adaptation is related to
domain adaptation. We also examine multi-
task learning, where two domains may be re-
lated, but where the concept to be learned in
each case is distinct. We show that our prior
conveys useful information across domains,
genres and tasks, while remaining robust to
spurious signals not related to the target do-
main and concept. We further show that our
model generalizes a class of similar hierarchi-
cal priors, smoothed to varying degrees, and
lay the groundwork for future exploration in
this area.

Introduction

1.1 Problem definition
Consider the task ofnamed entity recognition formance againstanumber of baselines, demonstrat-

(NER). Specifically, you are given a corpus of newdnd both its effectiveness and robustness.

articles in which all tokens have been labeled as ei-

ther belonging to personal name mentions or No§. o Hierarchical feature trees

The standard supervised machine learning problem

is to learn a classifier over this training data that willn many NER problems, features are often con-
successfully label unseen test data drawn from tretructed as a series of transformations of the input
same distribution as the training data, where “samigaining data, performed in sequence. Thus, if our
distribution” could mean anything from having thetask is to identify tokens as either beif@)utsideor
train and test articles written by the same author t@)nsideperson names, and we are given the labeled

having them written in the same language. Having
successfully trained a named entity classifier on this
news data, now consider the problem of learning to
classify tokens as names in e-mail data. An intuitive
solution might be to simply retrain the classifidg
novg on the e-mail data. Practically, however, large,
labeled datasets are often expensive to build and this
solution would not scale across a large number of
different datasets.

Clearly the problems of identifying names in
news articles and e-mails are closely related, and
learning to do well on one should help your per-
formance on the other. At the same time, however,
there are serious differences between the two prob-
lems that need to be addressed. For instance, cap-
italization, which will certainly be a useful feature
in the news problem, may prove less informative in
the e-mail data since the rules of capitalization are
followed less strictly in that domain.

These are the problems we address in this paper.
In particular, we develop a novel prior for named
entity recognition that exploits the hierarchical fea-
ture space often found in natural language domains
(81.2) and allows for the transfer of information
from labeled datasets in other domaig4.8). §2
introduces thanaximum entropymaxent) and:on-
ditional random field CRF) learning techniques em-
ployed, along with specifications for the design and
training of our hierarchical prior. Finally, i3 we
present an empirical investigation of our prior’s per-



sample training sentence: LeftToken.*
o o o o o | LeftToken.IsWord.*
G ve the book to Professor Caldwell LeftToken.IsWord.IsTitle. .
(1) LeftToken.IsWord.IsTitle.equals.

one such useful feature might bks the token one LeftToken.IsWord.IsTide.equals.mr

slot to the left of the current tokeRr of essor ? Table 1: A few examples of the feature hierarchy
We can represent this symbolically la4..Professor

where we describe the whole space of useful featuré® the named entity status of the current word. This
of this form as:{di r ecti on = (L)eft, (C)urrent, S easily accomplished by backing up one level from
(R)ight:.{di stance =1, 2,3, ..}.{val ue=Pro- & l€afin the tree structure to its parent, to represent

fessor, book, .}. We can conceptualize this struc-2 class of features such hdl.*. It has been shown

ture as a tree, where each slot in the symbolic nanfdnpirically that, while the significance pérticular
of a feature is a branch and each period between slé?s?tures mlght vary between domains 'C_md ta_sk_s, cer-
represents another level, going from root to leaf a§n generalizedlassesf features retain their im-

read left to right. Thus a subsection of the entire fed2ortance across domains (Minkov et al., 2005). By
ture tree for the tokecal dwel | could be drawn Packing-off in this way, we can use the feature hier-

as in Figure 1 (zoomed in on the section of the tre@'Chy as a prior for transferring beliefs about the sig-

where thel.1.Professofeature resides). nificance of entirelasse®f features across domains
and tasks. Some examples illustrating this idea are
direction shown in table 1.
L SR

1.3 Transfer learning
distance When only the type of data being examined is al-

1 . .
/’N lowed to vary (from news articles to e-mails, for

value example), the problem is calledomain adapta-
PW tion (Daune Il and Marcu, 2006). When the task
being learned varies (say, from identifying person
true false names to identifying protein names), the problem

Figure 1. Graphical representation of a hierarchical fed> calledmulti-task learning(Caruana, 1997). Both

ture tree for toker€al dwel | in example Sentence 1. of these are considered specific types of the over-
archingtransfer learningproblem, and both seem

Representing feature spaces with this kind of tre¢g require a way of altering the classifier learned
besides often coinciding with the explicit languagen the first problem (called theource domainor
used by common natural language toolkits (Cohesource taskto fit the specifics of the second prob-
2004), has the added benefit of allowing a model ttem (called thearget domainor target tash.
easily back-off, or smooth, to decreasing levels of More formally, given an example and a class
specificity. For example, the leaf level of the fealabel y, the standard statistical classification task
ture tree for our sample Sentence 1 tells us that the to assign a probabilityp(y|x), to = of belong-
word Pr of essor is important, with respect to la- ing to classy. In the binary classification case the
beling person names, when located one slot to tHabels areY” € {0,1}. In the case we examine,
left of the current word being classified. This mayeach exampler; is represented as a vector of bi-
be useful in the context of an academic corpus, butary featureq f1(z;), - , fr(x;)) where F' is the
might be less useful in a medical domain where theumber of features. The data consists of two dis-
word Pr of essor occurs less often. Instead, wejoint subsets: the training S€X,qin, Yirain) =
might want to learn the related featurel.Dr. In  {(xz1,11)---,(znN,yn)}, available to the model for
fact, it might be useful to generalize across multipléts training and the test sét;.s; = (1, -+ ,xp),
domains the fact that the word immediately preceddpon which we want to use our trained classifier to
ing the current word is often important with respectmake predictions.



In the paradigm of inductive learning 2 Models considered
(Xtrain, Yirain) are known, while bothX,. and
Yiest are completely hidden during training time. In
this cases( oo andXtTain are both assumed to haveln this Work, we will base our work on Condi-
been drawn from the same distributicR, In the tional Random Fields (CRF's) (Lafferty etal., 2001),
setting oftransfer learning however, we would like Which are now one of the most preferred sequential
to apply our trained classifier to examples drawfnodels for many natural language processing tasks.
from a distribution different from the one upon The parametric form of the CRF for a sentence of

which it was trained. We therefore assume ther€ngthn is given as follows:

2.1 Basic Conditional Random Fields

are two different distributiongps°urc¢ andDer9¢t, 1 n F

from which data may be drawn. Given this notation pA(Y = y|x) = 70x) exp() > fi(x,pi)A))

we can then precisely state the transfer learning i=1 j=1

problem as trying to assign labels' ' to test _ o (2)
data X' drawn from D9, given training whereZ(x) is 'Fhe normallzatlon.term. CRF learns a
data( Xjouree, y;source) drawn fromDsouree. model consisting of a set of weights= {\;...\r}

In this paper we focus on two subproblems opver the features so as to maximize the conditional
transfer learning: likelihood of the training data, Pt ain|Xtrain),

« domain adaptationwhere we assume (the set 9\Ven the modep,.
of possible labels) is the same for bath*“"** 5 5 ~RE with Gaussian priors
and D¢t while Ds°vre¢ and D9t them-
selves are allowed to vary between domains.
e multi-task learning(Ando and Zhang, 2005; ™.
Caruana, 1997; Sutton and McCallum, 2005P"°" (Chen and
Zhang et al., 2005) in which the task (and labeYariance N (u, o
set) is allowed to vary from source to target. N F (O — )7
Domain adaptation can be further distinguished byrgmaxz <10g pA(Yk|Xk)) - 52 J272“J
the degree of relatedness between the source and tar-* =1 j 7j

get domains. For example, in this work we group . .
data collected in the same medium (e.g., all anng\_/hereﬂ > 01s a parameter controliing the amount
gf regularization, anaV is the number of sentences

in the training set.

To avoid overfitting the training data, thed& are
often further constrained by the use of a Gaussian
Rosenfeld, 1999) with diagonal co-
2), which tries to maximize:

tated e-mails or all annotated news articles) as b
longing to the sam@enre Although the specific
boundary between domain and genre for a particy-3  gource trained priors

lar set of data is often subjective, it is neverthelessSne recently proposed method (Chelba and Acero

useful distinction to draw. o .
One common way of addressing the transfe%ood') for transfer learning in Maximum Entropy

. . . S . models' involves modifying the:'s of this Gaussian
learning problem is to usem@ior which, in conjunc- . . .
) . L prior. First a model of the source domaifa®“ ¢,
tion with a probabilistic model, allows one to spec-iS leamed by training OfX$uree ysourcel Then a
ify a priori beliefs about a distribution, thus bias- y g train >~ train J -
. . . model of the target domain is trained over a limited
ing the results a learning algorithm would have pro- target < target _
duced had it only been allowed to see the trainin§€t Of labeled target dataX iy, ', Yrain } butin-
data (Raina et al., 2006). In the example froinl, stead of regularizing thia**9¢¢ to be near zero (i.e.
our belief that capitalization is less strict in e-mailssetting = 0), A%"9¢ is instead regularized to-
than in news articles could be encoded in a prior thavards the previously learned source valugs""
biased the importance of theapi tal i zati on (by settingu = A°“"*¢, while ¢ remains 1) and
feature to be lower for e-mails than news articleghus minimizing(Aferget — psource)2,
In the next S(?Ctlon We addrgss the problem of ho !Maximum Entropy models are special cases of CRFs that
to come up with a suitable prior for transfer learning;se the 1.1.0. assumption. The method under discussion can

across named entity recognition problems. also be extended to CRF directly.



Note that, since this model requirEs”"* in or-  the tree is also associated with a hyper-paramster
der to learm\'@"9¢t it, in effect, requires two distinct Note that since the hierarchy is a tree, each node
labeled training datasets: one on whicttri@in the has only one parent, represented byrpa Simi-
prior, and another on which to learn the model’s filarly, we represent the set of children nodes of a node
nal weights (which we caliuning), using the previ- n as clin).
ously trained prior for regularization. If we are un- The entire graphical model for an example con-
able to find a match between features in the trainingisting of three domains is shown in Figure 2.
and tuning datasets (for instance, if a word appeaiihe conditional Iikelihood of the entire training
in the tuning corpus but not the training), we backdata(% X) = {(Y1 ,xl ),. (ygwi de)}d Lis
off to a standardV (0, 1) prior for that feature. given by:

P(y|x,w,z)
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e @ M@ @Mm where the terms in the first line of eq. (3) represent
the likelihood of data in each domain given their cor-
Figure 2: Graphical representation of the hierarchicalesponding model parameters, the second line repre-

3)
®

transfer model. sents the likelihood of each model parameter in each
_ _ _ domain given the hyper-parameter of its parentin the
2.4 New model: Hierarchical prior model tree hierarchy of features and the last term goes over

In this section, we will present a new model thathe entire tree/” except the leaf nodes. Note that in
learns simultaneously from multiple domains, b§he last term, the hyper-parameters are shared across

taking advantage of our feature hierarchy. the domains, so there is no product over
We will assume that there ar® domains on We perform a MAP estimation for each model pa-

which we are learning simultaneously. Let there bEAMeter as well as the hyper-parameters. Accord-
M, training data in each domaih For our experi- N9lY, the estimates are given as follows:
ments with non-identically distributed, independent M,

data, we use conditional random fields (¢f2.1). )\gfl) - Z a(d) (log P(y? ]x A(d)))
However, this model can be extended to any dis- i=1 UAy

criminative probabilistic model such as the MaxEnt +  Zpasw)

model. LetA@ = (A9 ... ,)\gf?) be the param- 2pam) + Sicchim (A2)i

eters of the discriminative model in the domain Zp = Par) g ‘fh((:n(ﬂ) 4)
where F; represents the number of features in the

domaind. where we used the notatidn |z); because nodg

Further, we will also assume that the features dhe child node ofz, could be a parameter node or
different domains share a common hierarchy repre hyper-parameter node depending on the position
sented by a tre€, whose leaf nodes are the featuresf the noden in the hierarchy. Essentially, in this
themselves (cf. Figure 1). The model parametemnodel, the weights of the leaf nodes (model param-
A then, form the parameters of the leaves of thisters) depend on the log-likelihood as well as the
hierarchy. Each non-leaf node € non-leaf7) of prior weight of its parent. Additionally, the weight



of each hyper-parameter node in the tree is com-
puted as the average of all its children nodes and its
parent, resulting in amoothingeffect, both up and
down the tree.

Input DSOUT’CG — (XSOUTCG YSO’U,T’CG)

¢ h t'%‘ain t7 train
target arge argety.

D - (Xtrain 7§/train )’
Feature setgsource ftarget.
Feature Hierarchieg/ 5" <, 1 rget

Minimum membership sizé/

2.5 An approximate Hierarchical prior model

The Hierarchical prior model is a theoretically well
founded model for transfer learning through feature
heirarchy. However, our preliminary experiments
indicated that its performance on real-life data sets is
not as good as expected. Although a more thorough
investigation needs to be carried out, our analysis in-
dicates that the main reason for this phenomenon is
over-smoothing. In other words, by letting the infor-
mation propagate from the leaf nodes in the hierar-
chy all the way to the root node, the model loses its
ability to discriminate between its features.

As a solution to this problem, we propose an

Train CRF usingD®°“"<¢ to obtain
feature weightg\souree
For each featurg e Ftorget

Initialize: noden = f

While (n ¢ Hsovree

or |LeavegH**""“(n))| < M)

andn # root(H'r9et)

n «— Pa(Htarget(n))

Compute. s ando s using the sample

{Afource ’ Z e Leave$HSO’u,7'C€(n))}
Train Gaussian prior CRF usimg'*9¢! as data
and{u} and{o} as Gaussian prior parameters.
Output:Parameters of the new CRE"9¢!,

approximate version of this model that weds ideas _ . . . .
from the exact heirarchical prior model and thelable 2: Algorithm for approximate hierarchical prior:
Chelba model Pa(H#°u¢(n)) is the parent of node in feature hierar-

. . . . chy Hseuree,  |LeavesH*°""“¢(n))| indicates the num-

AS_ with the Chelpa prior method '§2'3’_ this ap- . be)r/ of leaf nO(‘jes (befsic featlEre)gl under a node the
proximate hierarchical method also requires two dissigrarchypsovree.
tinct data sets, one for training the prior and another
for tuning the final weights. Unlike Chelba, we It is important to note that this smoothed tree is
smooth the weights of the priors using the featurean approximation of the exact model presented in
tree hierarchy presentedif.1, like the hierarchical §2.4 and thus an important parameter of this method
prior model. in practice is the degree to which one chooses to

For smoothing of each feature weight, we chose temooth up or down the tree. One of the benefits
back-off in the tree as little as possible until we had af this model is that the semantics of the hierarchy
large enough sample of prior data (measuredfas (how to define a feature, a parent, how and when
the number of subtrees below the current node) do back-off and up the tree, etc.) can be specified
which to form a reliable estimate of the mean andby the user, in reference to the specific datasets and
variance of each feature or class of features. Foasks under consideration. For our experiments, the
example, if the tuning data set is as in Sentencgmantics of the tree are as presenteflid.
1, but the prior contains no instances of the word The Chelba method can be thought of as a hier-
Pr of essor, then we would back-off and computearchical prior in which no smoothing is performed
the prior mean and variance on the next higher leveln the tree at all. Only the leaf nodes of the
in the tree. Thus the prior fdr.1.Professomwould prior’s feature tree are considered, and, if no match
be V' (mean(L.1.*), variance(L.1.}) where mean() can be found between the tuning and prior’s train-
and variance() oL.1.* are the sample mean anding datasets’ features, &(0,1) prior is used in-
variance of all the features in the prior dataset thatead. However, in the new approximate hierarchical
match the patterh.1.* — or, put another way, all the model, even if a certain feature in the tuning dataset
siblings ofL.1.Professoin the feature tree. If fewer does not have an analog in the training dataset, we
thanM such siblings exist, we continue backing-off,can always back-off until an appropriate match is
up the tree, until an ancestor with sufficient descerfeund, even to the level of the root.
dants is found. A detailed description of the approx- Henceforth, we will use only the approximate hi-
imate hierarchical algorithm is shown in table 2.  erarchical model in our experiments and discussion.



Table 3: Summary of data used in experiments  |ntra-genre transfer performance evaluated on MUC6
| Corpus | Genre| Task |

- 0-7 L] L L L
UTexas Bio Protein
Yapex Bio | Protein 06 |
MUC6 News | Person 05}
MUC7 | News | Person =04l
CSPACE| E-mail | Person H
03} (a) GAUSS: tuned on MUC6+ |
3 Investigation a (b) CAT: tuned on MUCB+7 x
0.2 F . (c)HIER:MUC6+7 prior, tuned on MUCEx -
3.1 Data, domains and tasks 01 ,;,'";(d) CHELBA: MUC6+7 prior, tuned on MUC6E&
For our experiments, we have chosen five differ- "0 20 40 60 80 100
ent corpora (summarized in Table 3). Although  percent of target-domain data used for tuning

each corpus can be considered its afamain(due igure 3: Adding a relevant HIER prior helps compared

to variations in annotation standards, specific tasgI the GAUSS baselinéd) > (a)), while simply CATing
date of collection, etc), they can also be roughly, using CHELBA can hurt(¢l) ~ (b) < (a), except with
grouped into three differergenres These areab-  very little data), and never beats HIER)> (b) ~ (d)).
stracts from biological journalfJT (Bunescu etal., 3 o Experiments & results

2004), Yapex (Frarem et al., 2002)]news articles _

[MUCS (Fisher et al., 1995), MUC7 (Borthwick et We e_valuated the performance of various trangfer
al., 1998)]; andpersonal e-mail§CSPACE (Kraut !earnlng methgds on the data and tasks de§cr|bed
et al., 2004)]. Each corpus, depending orgigsire !N §3.1. Specifically, we compared our approximate

is labeled with one of two name-findirigsks hierarchical prior model (HIER), implemented as a
e protein names in biological abstracts CRF, against three baselines: . _
e person names in news articles and e-mails e GAUSS: CRF model tuned on a single domain’s

We chose this array of corpora so that we could data, using a standasd (0, 1) prior
evaluate our hierarchical prior’s ability to generalize ® CAT: CRF model tuned on a concatenation of
across and incorporate information from a variety of Multiple domains’ data, using.&(0, 1) prior
domains, genres and tasks. e CHELBA: CRF model tuned on one domain’s
In each case, each item (abstract, article or e-mail) data, using a prior trained on a different, related
was tokenized and each token was hand-labeled as domain’s data (cf§2.3)
either being part of a name (protein or person) oYVe use token-levek'1 as our main evaluation mea-
not, respectively. We used a standard natural lagure, combining precision and recall into one metric.
guage toolkit (Cohen, 2004) to compute tens of
thousands of binary features on each of these t3:2-1
kens, encoding such information as capitalization Figure 3 shows the results of an experiment in
patterns and contextual information from surroundlearning to recognize person names in MUC6 news
ing words. This toolkit produces features of the typaurticles. In this experiment we examined the effect
described irg1.2 and thus was amenable to our hiof adding extra data from a different, but related do-
erarchical prior model. In particular, we chose tanain from the same genre, namely, MUC7. Line
use the simplest default, out-of-the-box feature gera shows the F1 performance of a CRF model tuned
erator and purposefully did not use specifically enenly on the target MUC6 domain (GAUSS) across a
gineered features, dictionaries, or other techniqgueange of tuning data sizes. Lideshows the same
commonly employed to boost performance on sucéxperiment, but this time the CRF model has been
tasks. The goal of our experiments was to see toned on a dataset comprised of a simple concate-
what degree named entity recognition problems naation of the training MUCG6 data froma), along
urally conformed to hierarchical methods, and nowvith a different training set from MUC7 (CAT). We
just to achieve the highest performance possible. can see that adding extra data in this way, though

Intra-genre, same-task transfer learning



tasks. Here again we are trying to learn to recognize
Inter-genre transfer performance evaluated on MU%%rson names in MUC6 e-mails. but this time. in-

05 [ E ST T | St g o otrer datasts slary e
o8t % (f) CAT: tuned on a'II domams i _p ! y g
* (g) HIER: all domains prior, tuned on MUC6 ological corpora (UT & YAPEX), labeled not with
0.7F & (n) CHELBA: all domains prior, tuned on MUCY person names but with protein names instead, along
T 82 with the CSPACE e-mail and MUC7 news article
0:4 i corpora. The robustness of our prior prevents a
03l model trained on all five domaing)(from degrading
02t away from the intra-genre, same-task baselge (
0.1 unlike the model trained on concatenated déja (

0 20 40 60 80 100 CHELBA (h) performs similarly well in this case,
Percent of target-domain data used for tuning’®naps because the domains are so different that al-
most none of the features match between prior and
fectively filter irrelevant data. Adding more irrelevanttunlng data, ar?d thus CHELBA backs-off to a stan-
data to the priors doesn't hurte) ~ (g) ~ (h)), while ~dardA/(0,1) prior.

simply CAT’ing it, in this case, is disastrou€)( << (e). This robustness in the face of less similarly related

data is very important since these types of transfer

the data is closely related both in domain and taskyathods are most useful when one possesses only
has actually hurt the performance of our recognizgfgyy |ittle target domain data. In this situation, it
for training sizes of moderate to large size. This i ofen difficult to accurately estimate performance
most likely because, although the MUC6 and MUCZ, 1, 5 one would like assurance than any transfer

datasets are closely related, they are still drawn fropathod being applied will not have negative effects.
different distributions and thus cannot be intermin-

gled indiscriminately. Line shows the same com- 3.2.3 Comparison of HIER prior to baselines
bination of MUC6 and MUCY, only this time the  gach scatter plot in Figure 5 shows the relative
datasets have been combined using the HIER prigferformance of a baseline method against HIER.
In this case, the performance actually does improves,ch point represents the results of two experi-
both with respect to the single-dataset trained basgients: the y-coordinate is the F1 score of the base-
line (@) and the naively trained double-datase). ( |ine method (shown on the y-axis), while the x-
Finally, line d shows the results of the CHELBA 4o dinate represents the score of the HIER method
prior. Curiously, though the domains are closely rej, the same experiment. Thus, points lying be-
lated, it does more poorly than even the non-transfeg,, the y = x line represent experiments for which
GAUSS. One possible explanation is that, althoughy|gr received a higher F1 value than did the base-
much of the vocabulary is shared across domaingae While all three plots show HIER outperform-
the interpretation of the features of these words M3Kg each of the three baselines, not surprisingly,
differ. Since CHELBA doesn't model the hierarchyihe non-transfer GAUSS method suffers the worst,
among features like HIER, it is unable to smooth|iyed by the naive concatenation (CAT) base-
away these discrepancies. In contrast, we see thfle Both methods fail to make any explicit dis-
our HIER prior is able to successfully combine thejnction between the source and target domains and
relevant parts of data across domains while filtering, ;s suffer when the domains differ even slightly
the irrelevant, and possibly detrimental, ones. Thigom each other.  Although the differences are
experiment was repeated for other sets of intra-genfgyre subtle, the right-most plot of Figure 5 sug-
tasks, and the results are summarizegr2. 3. gests HIER is likewise able to outperform the non-
hierarchical CHELBA prior in certain transfer sce-
narios. CHELBA is able to avoid suffering as much
In Figure 4 we see that the properties of the hias the other baselines when faced with large differ-
erarchical prior hold even when transferring acrossnce between domains, but is still unable to capture

Figure 4: Transfer aware priors CHELBA and HIER ef-

3.2.2 Inter-genre, multi-task transfer learning
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Figure 5: Comparative performance of baseline methods (&LAT, CHELBA) vs. HIER prior, as trained on nine
prior datasets (both pure and concatenated) of variousleaizes, evaluated on MUC6 and CSPACE datasets. Points
below the y = x line indicate HIER outperforming baselines.

as many dependencies between domains as HIERet al., 2007), semi-supervised (Grandvalet and Ben-

) gio, 2005; Blitzer et al., 2006), and transductive ap-
4 Conclusions, related & future work proaches (Taskar et al., 2003).

In this work we have introduced hierarchical feature Recent work using so-called meta-level priors to
tree priors for use in transfer learning on named ertansfer information across tasks (Lee et al., 2007),
tity extraction tasks. We have provided evidence tha¥hile related, does not take into explicit account the
motivates these models on intuitive, theoretical an@ierarchical structure of these meta-level features of-
empirical grounds, and have gone on to demonstral@n found in NLP tasks. Daunallows an extra de-
their effectiveness in relation to other, competitivedree of freedom among the features of his domains,
transfer methods. Specifically, we have shown thdfplicitly creating a two-level feature hierarchy with
hierarchical priors allow the user enough flexibil-one branch fogeneralfeatures, and another fdo-
ity to customize their semantics to a specific probMain specificones, but does not extend his hierar-
lem, while providing enough structure to resist unchy further (Daur I1l, 2007)). Similarly, work on
intended negative effects when used inappropriateljierarchical penalization (Szafranski et al., 2007) in
Thus hierarchical priors seem a natural, effectiviVo-level trees tries to produce models that rely only
and robust choice for transferring learning acrosgn @ relatively small number of groups of variable,
NER datasets and tasks. as structured by the tree, as opposed to transferring
Some of the first formulations of the transferknowledge between branches themselves.
learning problem were presented over 10 years Our future work is focused on designing an al-
ago (Thrun, 1996; Baxter, 1997). Other techniquegorithm to optimally choose a smoothing regime
have tried to quantify the generalizability of cer-for the learned feature trees so as to better exploit
tain features across domains (Daait and Marcu, the similarities between domains while neutralizing
2006; Jiang and Zhai, 2006), or tried to exploit thdheir differences. Along these lines, we are working
common structure of related problems (Ben-Davi@" methods to reduce the amount of labeled target
et al., 2007; Soblkopf et al., 2005). Most of domain data needed to tune the prior-based mod-
this prior work deals with supervised transfer learn€ls, looking forward to semi-supervised and unsu-
ing, and thus requires labeled source domain dat@€rvised transfer methods.
though there are examples of unsupervised (Arnold
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