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Abstract cles in which all the personal name mentions have been la-
beled. The standard supervised machine learning problem
The problem of transfer learning, where information is to learn a classifier over this training data that will suc-
gained in one learning task is used to improve performance cessfully label unseen test data drawn from the same distri-
in another related task, is an important new area of re- bution as the training data, where “same distribution” doul
search. In this paper we address the subproblem of domainmean anything from having the train and test articles writ-
adaptation, in which a model trained over a source domain ten by the same author to having them written in the same
is generalized to perform well on a related target domain, language. Having successfully trained a named entity clas-
where these two domains’ data are distributed similarlyt, bu  sifier on this encyclopedia data, now consider the problem
not identically. of learning to classify tokens as names in instant messenger
Previous work has studied the supervised version of thisdata. Clearly the problems of identifying names in encyclo-
problem in which labeled data from both source and tar- pedia articles and instant messages are closely relatdd, an
get domains are available for training. In this work, how- learning to do well on one should help your performance
ever, we study the more challenging problem of unsuper-on the other. At the same time, however, there are serious
vised transductive transfer learning, where no labelecdat differences between the two problems that need to be ad-
from the target domain are available at training time, butin  dressed. For instance, capitalization, which will cefain
stead, unlabeled target test data are available duringrtrai  be a useful feature in the encyclopedia problem, may prove
ing. less informative in the instant messenger data since tke rul
We describe some current state-of-the-art inductive and of capitalization are followed less strictly in that domain
transductive approaches involving three popular learning Thus there seems to be some need for altering the classi-
models, namely the maximum entropy, support vector ma-fier learned on the first problem (called tbeurce domain
chines and naive Bayes models. We then adapt these mode fit the specifics of the second problem (called tduget
els to the problem of transfer learning for protein name ex- domain). This is the problem oflomain adaptatiorand is
traction. In the process, we introduce a novel maximum considered a type dfansfer learning
entropy based technique, Iterative Feature Transfornmatio

(IFT), and show that it achieves comparable performance . . . .
with state-of-the-art transductive SVMs. target domain data. Since this training data would be drawn

, : from the same distribution as the data you will ultimately
Finally, we compare the relative strengths and weak- . . . .
. . test over, this approach avoids the transfer issue entirely
“The problem with this idea is that often large amounts of
labeled data are not available in the target domain. While
it has been shown that even small amounts of labeled target

simple relaxations, such as providing additional informa- .
tion like the proportion of positive examples in the testgat data can greatly improve transfer results [6, 8], there has
been relatively little work, however, on the case when there

can S|gn|f|cantly improve the performance of some of the is no labeled target data available, that is, totally unsupe
transductive transfer learners.

vised domain adaptation. In this scenario, one way to adapt
a model trained on the source domain is to make the unla-
beledtarget test datavailable to the model during training
time. Leveraging (unlabeled) test data during trainingetim
Consider the task ohamed entity extractiofNER). is calledtransductive learningnd is a well studied problem
Specifically, you are given a corpus of encyclopedia arti- in the scenario when the training data and test data come

The intuitive solution seems to be to simply train on the

shedding light both on the algorithms examined and the dif-
ficulty of the respective problems. In addition, we show how

1 Introduction



from the same domain. However, transduction is not well-  In the three cases discussed abo¥e,; and X;, .., are
studied in a transfer setting, where the training and tetst da both assumed to have been drawn from the same distribu-
come from different domains. Studying transfer learning in tion, D. In the setting oftransfer learning however, we

a transductive setting will be the main focus of our work.  would like to apply our trained classifier to examples drawn

The rest of the paper is organized as follows. In section from a distribution different from the one upon which it was
2, we compare and contrast transductive transfer learningtrained. We therefore assume there are two different dis-
with the more traditional learning paradigms while summa- tributions, Ds°“v<¢ and D**"9¢*, from which data may be
rizing relevant work done in the past. Section 3 describesdrawn. Given this notation we can then precisely state the
the two discriminative models and one generative model transfer learning problem as trying to assign labi}%;**
we considered in detail in this work. In this section, we to test dataX; " drawn fromD**"9¢!, given training data
describe the adaptations we used to make these models ag=X;%c¢, Y,52ure¢) drawn fromD*°%"<, In this paper we
plicable to the transductive transfer learning settinge®h  focus on the subproblem afomain adaptationwhere we
these adaptations, called IFT, is one of the original cbntri  assumeY” (the set of possible labels) is the same for both
tions of this work. We present our experiments and results D5°“"<¢ and D'**"9¢*, while D*°“"¢ and D'*"9¢* them-
in detail in section 4. Lastly, the paper is concluded in sec- selves are allowed to vary between domains. This is in con-
tions 5 and 6 where we comment on the results and discusgrast to the related subproblemrotilti-task learnindg1, 23]
directions for future work. in which the marginal distribution of the data is assumed
not to change, while the task (and therefore the labels) is
allowed to vary from source to target.

One of the first formulations of the transfer learning
problem was presented over 10 years ago by Thrun [24].
More recently there has been a focus on using source data

Given an example and a class label, the standard sta- {0 Iearn varioustypes of priors forthe targetdgta [_2.0].@th
tistical classification task is to assign a probability|<), ~ te€chniques have tried to quantify the generalizabilityest c
to z of belonging to clasg. In the binary classification ~ tain features across domains [9, 13], or tried to exploit the
case the labels arE € {0,1}. In the case we examine, Common structure of related problems [2, 4].
each example; is represented as a vector of binary fea-  Although the case of transfer learning without access to

2 Anoverview of learning paradigms and re-
lated work

tures(fi(z;), - - , fr(z;)) whereF is the number of fea-  any data drawn fronD*"9¢* is not completely hopeless
tures. The data consists of two disjoint subsets: the train-[13], in this paper we choose to focus on extensions to the
ing set(Xtrain, Yerain) = {(z1,91) -+, (xN,yn)}, avail- transfer learning setting that allow us to capture some-info
able to the model for its training and the test 388t,; = mation abouD!9¢!. One obvious such settingiisductive
(x1,+-+, 2 ), upon which we want to use our trained clas- transfer learningwhere we also provide a few auxiliary la-
sifier to make predictions. beled data X %" Yaer9 ) from the target domain

We discuss below different paradigms of learning asso- in addition to the labeled data from the source domain. Due
ciated with the classification problem. They are also sum-to the presence of labeled target data, this method cowdd als

marized in table 1 for the reader’s convenience. be calledsupervised transfdearning and is the most com-
In the paradigm ofnductive learning (X qin, Yirain) mon setting used by researchers in transfer learning today.
are known, while both¥;.,; andY;.s; are completely hid- In this work, however, we focus on a new and more chal-

den during training time. In the case sémi-supervised lenging paradigm, namelyransductive transfer learning
inductive learning [27, 22, 11], the learner is also prodide where there is no auxiliary labeled data in the target domain
with auxiliary unlabeled datX ,...i1iqry, that is not part of  available for training, but where the unlabeled test sehen t
the test set. It has been noted that such auxiliary data typtarget domainX /" can be seen during training. Again,
ically helps boost the performance of the classifier signifi- due to the lack of labeled target data, this setting could be
cantly. consideredinsupervised transféearning. It is important to
Another setting that is closely related to semi-supervised point out thatransductive learnings orthogonal tdrans-
learning istransductive learning25, 14, 16], in which fer learning That is, one can have a transductive algorithm
Xiese (but, importantly, notY;.s), is known at training that does or does not make the transfer learning assumption,
time. That is, the learning algorithm knows exactly which and vice versa. Much of the work in this paper is inspired
examples it will be evaluated on after training. This can be a by the belief that, although distinct, these problems awe ne
great asset to the algorithm, allowing it to shape its denisi  ertheless intimately related. More specifically, whenrigyi
function to match and exploit the properties seerXin,;. to solve a transfer problem between two domains, it seems
One can think of transductive learning as a special case ofintuitive that looking at thaunlabeledtest data of the tar-
semi-supervised learning in Whicti,uzitiary = Xtest- get domain during training will improve performance over



Table 1. Learning settings are summarized by the type of auxiliarg st data used. For all settings we assume
(Xpounee Yiource) is available at training time, whil&;.,; is unknown. Settings for which we have run experiments (see
table 4) are marked in bold, along with their short name.

. . . Auxiliary data Test data
Natural name for learning setting Experiment name : .

Domain | Labels || Domain | Xjc.
Inductive learning Induct - - Dseuree | yunseen
Semi-supervised inductive learning Dseuree | unseen|| Devree | unseen
Transductive learning - - Dseurce | seen
Transfer learning - - Dtarget | ynseen
Inductive transfer learning InductTransfer Diarget | seen Diarget | unseen
Semi-supervised inductive transfer learning Dsouree | ynseen|| Dr9et | unseen
Transductive transfer learning TransductTransfer - - Diarget | seen
Supervised Transductive transfer learning Dtarget | seen Dtarget | seen
Relaxed Transductive transfer learning RelaxedTransductTransfgr - - Diarget | seen
Semi-supervised transductive transfer learning Dsouree | ynseen|| Dierdet | seen

1 A relaxation of transductive transfer learning in whichpodtions of labels in the target data is known at traininggetim

ignoring this source of information. tive transfer, transductive transfer and relaxed tranteic
We note that the setting afiductive transfer learning transfer learning settings.

in which labeled data from both source and target domains

are available for training, serves as a rough upper-boundto3.1 Maximum entropy models

the performance of a learner basedtmnsductive trans-

fer learning in which no labeled target data is available.

Hence, although our primary interest is the transductive

transfer setting, we also used the former setting in all our

3.1.1 Inductive learning: simple MaxEnt
Entropy maximization (MaxEnt) [3, 18] is a way of mod-
eling the conditional distribution of labels given exangple

) . . Given a set of training exampl€$;,.qin, = {x1,...,2N8},
experlm_enf[s for purposes of |IIust_rat|on. . . their labelsY: i = {y1,...,y~n}, and the set of fea-
For similar reasons, we considered an additional arti- -
turesF = {fi,...,fr}, MaxEnt learns a model con-

ficial setting, which we caltelaxed transductive transfer
learning, in our experiments. This setting is almost equiv-
alent to the transductive transfer setting, but the model is
allowed to know the proportion of positive examples in the
target domain. Although this technically violates the term
of unsupervision in transductive transfer learning, incpra
tice estimating this single parameter over the target domai
does not require nearly as much labeled target data as learn- 1 F
ing all the parameters of a fully supervised transfer model, Ay = ylzi) = Z0) eXP(Z fit@i)Ajy) (1)
and thus serves as a nice compromise between the two ex- ! j=1
tremes of transduction and supervision. . o ]

These and a few other interesting settings are summa-WhereZ Is the normalization term:

g g

rized in table 1. Note that we only displayed a small subset F
of the many possible learning settings. Z(wi)= Y exp(>_ fi(zi)Ajy) 2)

ye{0,1} Jj=1

sisting of a set of weights corresponding to each class
= {A1y--AFytyefoy over the features so as to
maximize the conditional likelihood of the training data,
P(Yzrain| Xtrain), given the modeby, . In exponential para-
metric form, this conditional likelihood can be expressed

3 Methods considered In order to avoid overfitting the training data, thesg are
In this section, we present the two discriminative mod- often further constrained to be near 0 by the use of a regular-

els considered in this work, maximum entropy and support iZation term which tries to minimizgA |13 = 3-, | (X;,,)*.
vector machines, and one generative model, the naive Bayed hus the entire expression being optimized is:
classifier. For each model, we first summarize their learning N

and inference algorithms in the classical inductive laagni argmax Zlog pa(yilz:) — BIIAJ2 3)

setting and then describe the adaptations we made for induc- e



wheres > 0 is a parameter controlling the amount of regu-
larization. Maximizing this likelihood is equivalent to o
straining the joint expectations of each feature and label i
the learned modelE, [f;, y], to match empirical expecta-
tions Eirqin[f;, y] as shown below:

Feature 2

N
Foanlfin] = 5256000 @

N
E\ [fjay] = % Z f](xz)PA(yLTz) (5) Feature 1 \G

Figure 1. lllustration of feature space transformation in

whered, (y;) = 1if y = y; ar_1d0 otherwi_se. _ transfer learning problemhs and hr easily separate the
In the next few subsections, we will describe how we  source and target data respectively. But a projection Ghto

adapt the model to various scenarios of transfer learning. is required beforé.; can successfully separate both distri-
butions at once.

3.1.2 Inductive transfer learning

Source trained prior models: One recently proposed
method [6] for transfer learning in MaxEnt models in-
volves modifyingA’s regularization term. First a model

hadz; = (fi(x;)...fr(x;)), you now have

x; = < fl (xi)specific’ fl (xi)general

of the source domainAs°v"¢¢ s learned by training ‘ (7)
on {Xjource ysourcel  Then a model of the target do- o (i) P f () 7emerel)

main is trained over a limited set of labeled target data o )
{Xff;igrft? }Qtrtzzglet}’ but instead of regularizing this!e"s! where spcf?zf?c Is source or target reslpecuvelly, ahd
to be near zero by minimizingAferoet||2, Atarget js in- fi(@i)*reetdieis just a copy off;(z;)9e"< . The idea is

stead regularized towards the previously learned soutee va that by expanding the feature space in this way MaxEnt will
uesAs°uree by minimizing||Ae79¢t — Asouree||2 Thus the be able to assign different weights to different versions of

modified optimization problem is: _the same feature._ If a feature is common in b_oth_ domains
its general copy will get most of the weight, while its spe-
N c?fic copies (fs°urce and fter9et) will get less weight, and
argmax 3 log paverae (i) —FIAITI - Arrree|f - VIEEVETSR
arge —

(6) 3.1.3 Transductive transfer learning: Iterative Feature
where N!“"9¢" is the number of labeled training examples Transformation (IFT)

train

in the target domain. It should be noted that this model In this subsection, we present a new approach for the un-
requiresY, " in order to learmi**"9¢* and is therefore a  supervised setting of transductive transfer learning gisin

supervised form ohductive transfer MaxEnt. For ease of notation we will uge**" < [f;, y]
to meanE, cpsource [f;(x), y], and similarly fortarget.
Feature space expansion: Another approach to the One problem with transfer in MaxEnt is that the joint

problem of inductive transfer learning is explored by distribution of the features with labels differs betweea th
Daumé [8, 9]. Here the idea is that there are certain fea-source and target domains. In other worB82%"<¢ [ f;, y]
tures that are common between different domains, and oth-does not necessarily equaf* ¢! [f;,y]. If the expecta-

ers that are particular to one or the other. More specifically tions in the train and test datasets are similar, thenAthe
we can redefine our feature sétas being composed of learned on the training data will generalize well to the test
two distinct subsetgsrecific | J Foeneral where the con-  data. The more these distributions differ, however, the les
ditional distribution of the features igFsrecific differ be- well the trained model will perform. Figure 1 illustratessth
tweenX seuree and Xter9¢t while the features igFoenere! phenomenon. In this example, there are two features com-
are identically distributed in the source and target. Given prising the feature space. The distribution of the positive
this assumption, there is an EM-like algorithm [9] for esti- (+) and negative (-) classes of the source (S) and target (T)
mating the parameters of these distributions. There is alsodistributions are plotted with respect to these featurée T

a simpler approach [8] of just making a duplicate copy of supervised, non-transfer problems are simple in thisgptti
each feature itk s°vree and X*?79¢* so whereas before you since the source and target data are each easily separable in



this feature space, bys andh respectively. For transfer  given by E*°“<¢[G(f;,y)] defined this way is equal to

learning, however, if we train on the source, we might learn Ef\‘""et [fj,y], the model expectations of the original fea-
the classifieths, which depends only ofeature 1 If we tures in the target domain, satisfying the condition in (9).

then attempt to classify the target data we will fail, since The effect is to rescalg;(x), putting more weight on fea-
feature 1is a poor discriminator of the target data. What we tures that occur frequently in the target but rarely in the
would like to do is transform the feature space so that the source (in a conditional sense), and downweighting feature
distribution of the positive and negative classes in tlaatsr that are common in the source but seldom seen in the target.
formed feature space is the same for both domains. ThisThis algorithm can be implemented in an iterative fashion
transformation is represented 6yin the figure, a line upon by first training the source model, computing the target ex-
which the data have been projected. Given this new trans-pectations using the source model, transforming the source
formation, hg can easily be learned over the source data features and then retraining the source model.

and subsequently performs equally well when transfered to  In practice, since the target expectatEji: i‘it [fi,y]is

the target data. Phrased in terms of maximum entropy, weonly approximate, we smooth the transformed features with
are trying to learn a transformati@#() of the feature space  the original ones in each iteration as follows:

F such that the joint distributions of the source and target

features with their labels are aligned: G'(fi(zi)) = 0fj(x:) + (1 = O)G(fj(xi)) (11)

target source
EEIG) v = B (G(F). 91,V € 7 (8) where the free parametércontrols the degree to which
One could relax this condition even further by arguing that we use the target conditional estimates to alter the source
it is enough to transform only one of the domains, say the conditionals.
source data, so that data from both domains could be sep-
arated by a single hyperplane. In the figure, if we project
only the source data ont@, but leave the target data un- . . .
touched, the hyperplarie; would still be able to classify 3.1.4 Relaxed .transductlve transfer learning: biased
the target data accurately. In maximum entropy phraseol- thresholding
ogy, the relaxed transformation can be expressed as: A natural way to exploit the known value of the proportion
of positive class labels in the target domain is to adjust the

Elrset[f; y] = B [G(f;),y],¥f; € F (9)  decision threshold of the MaxEnt classifier so that the per-

centage of unlabeled target examples predicted as positive

The problem with this, of course, is that in the unsuper- by the source-trained classifier is equal to the known value.

H P get
vised transductive transfer case, we do not Hale««" and We call this intuitive algorithnbiased thresholdingto re-

i a@target . _
_thereforgrczjtn not estm . [_j},y]. _Hence We approx flect the fact that the decision threshold is biased towards
imate E**79¢* [ f;, y] using the joint estimates on the target . . )
the known information on class ratio.

unlabeled data from a model learned from the source data
as shown below.

raroet 3.2 Support vector machines
I [fj’y]

Q

Etarget [fja y]

Asource

Ntarget 3.2.1 Inductive learning: inductive SVMs
1 test i , .
= —arger fi(zi) P, (y, 2) Support vector _machmes (SVM s) [15] take a different ap-
Niest i1 proach to the binary classification problem. Instead of ex-

target - . plicitly modeling the conditional distribution of the datad
whereN,.;;"" is the number of target domain (unlabeled) sing these estimates to predict labels, SVMs try to model

get expectations, but it is the best we could do in the un- p_dimensional real-valued vector of features and is then
supervised transductive setting. Now we use these expectaprojected as a point if-dimensional space.

tions to define the source domain transformatidas fol- Theinductive SVMexploits the label information of the

lows: training data and fits a discriminative hyperplane between
nsource ptarget (£, yi] the positively and negatively labeled training examples in

Vi Gfi(@) = fj e (10) thi to best te the two cl This sep-

i=1 i\Ti T R iS space, so as to best separate the two classes. This sep

aration is called the margin, and thus SVMs belong to the
where E*°vre¢[f; y;] is given by the formula in (4) and margin based approach to classification. This formulation
Npgouree is the number of labeled training data in the source has proven very successful as inductive SVMs currently

domain. It is easy to show that the empirical feature- have some of the best general performance of any popular
label joint expectations of the transformed source datamachine learning algorithm.



3.2.2 Inductive transfer learning: inductive SVMs Specifically, whereas the SVM usually just considers
with concatenated data which side of the hyperplane a test example is on in de-

Recall that in the supervised inductive transfer case,termining its label (i.e., a threshold of 0), this threshcéah

we are given the training seteXjeurce ysource) and be moved so that some points that lie nearest on the nega-

train o T train

(X/oroet ylarael)y  Since the SVM does not explicitly — tive side of the hyperplane and would normally be given a
model the data distribution, we simply concatenate the negative label, would instead receive a positive one, @ vic
source and target labeled data together and provide the enverse. This is very similar to the biased thresholding tech-
tire data for training. The hope is that it will improve on an nigue used in MaxEnt, hence we retain the same name.
SVM trained purely on labeled source data, by re-adjusting
its hyperplane based on the labeled target data. It is dessib

to do better than such a naive approachut we used this 3.3 Naive Bayes classifier

as areasonable baseline. 3.3.1 Inductive learning: maximum likelihood estima-
tion
3.2.3 Transductive transfer learning: transductive Naive Bayes [17] is one of the most popular and effec-
SVMs tive generative classifiers for many text-classificaticsksa

Transduction with SVMs, in contrast to probabilistic | jke any generative model, its decision rule is given by the

training data, in the transductive case, we add in unlabeledy)|gws:

testing data which we must also separate. Since we do not P(z]0(y))n(y)
know the labels of the testing data, however, we cannot P(ylz) = 5 —— (12)
perform a straight forward margin maximization, as in Y P(210(y))m(y)

the supervised case. Instead, one can use an iterativ@vheree(y)
algorithm [14] similar in flavor to the MaxEnt iterative
feature transformation (IFT) algorithm of section 3.1.3.
Specifically, a hyperplane is trained on the labeled source
data and then used to classify the unlabeled testing data. A
in IFT, one can adjust how confident the hyperplane must
be in its prediction in order to use a pseudo-label during the F

next phase of training (since there are no probabilitieggla P(z|0(y)) = H P(f;(x)|0;(v)) (13)
margin values are used as a measure of confidence). The ' '
pseudo-labeled testing data is then, in turn, incorporated
the next round of training. The idea is to iteratively adjust In our case, since the features are all binary, we use the
the hyperplane (by switching presumed pseudo-labels)Bernoulli distribution to model each feature as follows:

until it is very confident on most of the testing points, while
still performing well on the labeled training points.

are the class-conditional parameters atfgl)

are the prior probabilites. The naive Bayes model
makes the somewhat unrealistic yet practical assumption of
conditional-independence between the features of each ex-
Sclmple, given its class. That is:

Jj=1

F

P(z(0(y)) = T[(6;)" @ (1= 6;(y)" @ (14)
Transductive SVMs were originally designed for the J=l1
case where the training and test sets were drawn from the ) -
same domain. Again, since SVMs do not model the dataWwhered;(y) can be interpreted as the probability that the
distribution, it is not immediately obvious how one would féature f; assumes a valué given the classy. The
model different distributions in the SVM algorithm. Hence Bernoulli parameters;(y) and(y) are estimated using
in this work, we directly test the applicability of transduc Maximum Likelihood training with the labeled training data

tive SVMSs to the transductive transfer setting. (Xtrain, Yirain) = {(z1,51),- -, (zn,yn)} as below:
N
3.2.4 Relaxed transductive transfer learning: biased 0,(y) = Zilefj(xi)éy(yi) +A
thresholding Y oimq Oy(yi) + 2
As with the maximum entropy approaches described in sec- ZN 5, (i)
tion 3.1.4, transductive SVMs used for transfer can also be n(y) = % (15)
adjusted to match the prior proportion of positive examples
in the target domain. whered, (y;) = 1if y = y; and0 otherwise; and\ is the
1For example, one could impose a higher penalty for clastidicar- Laplace smoothing parameter, which we sed.t@ in our

rors on the target data than on the source data. experiments.



3.3.2 Inductive transfer learning: maximum likeli-
hood estimation with concatenated data

In the inductive transfercase, similar to the SVMs, we

Table 2. Summary of data used in experiments
| Corpus name (Abbr.) Abstracts| Tokens | % Positive |

concatenate the entire labeled datg 2w <, Y,2ource) and UTexas (UT) 748 216,795 G.G(VOO
(Xjoroet ytaraety o generate a single training set. Then, Yapex (¥) 200 60,530 15'00/0
we learn the parametefis(y) andr(y) using the maximum Yapex-train (YTR) 160 48,417 15.1%
likelihood estimators shown in the classic supervised case Yapex-test (YTT) 40 12,113 14.5%

(see eqgn. 15). Although more sophisticated approaches are

possible, we tried this algorithm as a simple baseline. ) ) i
3.3.4 Relaxed transductive transfer learning: redefin-

ing the prior
3.3.3 Transductive transfer learning: source- In the case when the values of the prior probability of each
o initialized EM ' class in the target data is available, we simplyfiy) to

these values and only estim#tgy) using eqn. 17 in the M-

: target target
In the transductive transfer cageX’ Y, step of the EM algorithm.

. o h . train 7 ~train ) are_ n_Ot
available for training, butX,..7“ is available at training
time. Learning from unlabeled examples in the generative .
framework is done typically using the standard Expectation 4 ~ Investigation
Maximization algorithm [19]. The algorithm is iterative, .

4.1 Domain

and consists of two steps: in the E-step corresponding to the

t* iteration, we compute the posterior probability of each  We now turn toprotein name extractignan interesting
label for all the unlabeled examples w.r.t. the old paramete problem domain [21, 26, 12] in which to test these meth-

values@ﬁ.t) (y), 7 (y) as follows: ods. In this setting you are given text related to biological
research (usually abstracts, captions, and full body tert f
P(z|0® ()7 (y) biological journal articles) which is known to contain men-

Yy Pyla, 00, 71) = Pald0 0 (g (18 tions of protein names. The goal is to identify which words
Zy/ (20 ()= (") are part of a protein name mention, and which are not. One
major difficulty is that there is a large variance in how these
(t41) (041) . ) o proteiqs are mentioned an_d e}nr)otated b.etween different au-
0" (y), 7" (y) using the posterior probabilites hors; journals, and sub-disciplines of biology. Because o

In the M-step, we estimate the new parameters

as follows. this variance it is often difficult to collect a large corpus
N ) of truly identically distributed training examples. Inatk
9(”1)@) i Jiw) Pyles, 057 (y) (17) researchers are often faced with heterogeneous sources of
J : -

data, both for training and testing, thus violating one &f th
key assumptions of most standard machine learning algo-
rithms. Hence the setting of transfer learning is very rele-
vant and appropriate to this problem.

SN Pyl 0 ()

SN P(ylai, 67 (y))

7 (y) N

(18)

where N is the number of unlabeled examples available
during training. In our case, this is the size of the set
X/#9¢  The iterations are continued until the likelihood ~ Our corpora are abstracts from biological journals com-
of the unlabeled data converges to a maximum value. Ining from two sources: University of Texas, Austin (UT) [5]
the completely unsupervised case of the EM algorithm, and Yapex [10]. Each abstract was tokenized and each to-
the model parameters are initialized to random valuesken was hand-labeled as either being part of a protein name
before starting the iterations. In our case, since we haveor not. We used a standard natural language toolkit [7] to
(Xpource ysource) gt our disposal, we first do a classic compute tens of thousands of binary features on each of
supervised training of our model using the labeled sourcethese tokens, encoding such information as capitalization
data, and initialize the parameters to the ones learned frompatterns and contextual information of surrounding words.
the source data, before we start the EM iterations. This Some summary statistics for these data are shown in ta-
encodes the information available from the source data intoble 2. We purposely chose corpora that differed in two
the model, while allowing the EM algorithm to discover its important dimensions: the total amount of data collected
optimal parameters on the target domain. and the relative proportion of positively labeled examples
in each dataset. Specifically, UT has over three times as
many tokens as Yapex but has only half the proportion of

4.2 Data and evaluation



4.3 Experiments and results
Table 3. Training and testing data used in the settings of
Inductive learning (1), Inductive Transfer (IT), Transdive
Transfer (TT) and Relaxed Transductive Transfer (RTT).
Abbreviations of data sets are described in table 2.

We assessed the relative performance of the various
methods on four different settings described in sectiom3. |
addition to running the corresponding adaptations of each
model for each of the settings, we did a few additional runs

| Setting | Source-train| Target-train| Target-test]

I - YTR YTT across the settings for purposes of illustration. For exam-
IT UT YTR YTT ple, we ran the transductive SVM not only on the transduc-
TT uT _ Y tive settings, but also on the two inductive settings. Note

RTT UT - Y that TSVM, when run on the inductive case corresponds to

transductive learning (see table 1) and when run on the in-
ductive transfer case, corresponds to the supervised-trans

positively labeled protein names. This disparity is not un- ductive transfer learning in table 1. There are other extra
common in the domain and could be attributed to differing runs we did for the purposes of comparison, which will be-
ways the data sources were collected and annotated. Speciome apparent from the following discussion.
ically, if the protein mention annotations in Yapex tend to ~ Table 4 summarizes the results under all four settings.
be longer (that is, extend for more tokens) then the propor- The inductive experiment is dominated by Naive Bayes,
tion of positively labeled tokens will be higher in Yapex. achieving an F1 of 86% compared to MaxEnt's 82% and
For all our experiments, we used the larger UT dataset asTSVM's 73%. This should not be surprising since gener-
our source domain and the smaller Yapex dataset as our tarative models are known be robust when large amount of
get. We also split the Yapex data into two paiapex-train  labeled training data is available.
(YTR) consisting of 80% of the data, aiYdpex-testYTT), Moving to the transductive transfer setting causes all
consisting of the remaining 20%. three methods’ performances to fall, but MaxEnt falls most
In table 3, we display the subsets of data used for varioussharply, causing it to lose its entire lead over TSVM. Note
learning settings in our experiments. Note that the trans-that in this setting, basic MaxEnt and ISVM have equiva-
ductive methods use different testing data from the induc- lent performance of about 54% F1. The inductive Naive
tive methods. This choice is made deliberately to provide Bayes (using maximum likelihood estimator) proves to the
a chance for the classifiers in each setting to achieve theirtop performer in this setting. TSVM, on the other-hand, is
peak performance, i.e., transductive algorithms work bestable to adjust its hyperplane in light of the transfer tesada
when there is abundance of unlabeled test data and inducand stabilize its performance at 60%, even though it is un-
tive a|gorithms work best when there is p|enty of labeled Iabeled, because it knows where these points lie relative to
data. However, since the data is slightly different between the labeled training points in feature space. Similarly, we
inductive and transductive settings, one must use caution i S€€ the effect of our iterative feature transformation algo
comparing the transductive results to the inductive ones.  rithm (IFT, section 3.1.3) on MaxEnt's transductive trans-
Because of the relatively small proportion of positive ex- fer performance. We use a conservative valué (B5) to
amples in both the UT and Yapex datasets, we are more in-ease the transition from source- to target-based condition
terested in achieving both high precision and recall of pro- feature expectations. Indeed, as expected from our previ-
tein name mentions instead of simply maximizing classifi- 0us analysis, iteratively combining the approximate joint
cation accuracy. Since we were dealing with binary, and notfeature-label expectations in the target data with the true

sequential classification, the definition of these meassres joints of the source data improves the overall performance
straightforward as summarized below: on the target data. It seems this method is bounded, how-

ever, by the quality of the initial target labels generatgd b
# of tokens labeled correctly by the model  the source-trained classifier. Given a relatively pooiahit

accuracy = R .
total # of tokens classification, how can we bootstrap our way up to higher
precision — # of POS-tokens labeled POS by the model and higher performance? This is certainly a question worthy
# of tokens labeled POS by the model  of future study. The transductive version of the naive Bayes
recall # of POS-tokens labeled POS by the model (using EM), however, fares worse than its inductive coun-

terpart. Since EM’s optimization function is the marginal
log-likelihood of the test data, it is not guaranteed to im-
prove the classification performance in some cases.

In the relaxed transductive transfer setting, finally, veher
We use thel'l measure, which combines precision and re- the target dataset is still unlabeled but all algorithmdealde
call into one metric, as our main evaluation measure. the expected proportion of positive examples, TSVM ex-

# of POS-tokens

2 x recallx precision
Fp - cxrecalx precsi (19)
recall+ precision




Table 4. Summary of % accuracyAgc), precision Prec), recall Reg, and F1 for regular maximum entrop@B4sic), It-
erative Feature Transformation MaxERET), prior-based regularized MaxEnRégularize), and feature expansion MaxEnt
(Expand), inductive SVM (SVM), transductive SVM TSVM), Maximum Likelihood Naive BayesNB-ML ), and EM based
Naive Bayes KIB-EM) models under the conditions of classic inductive learnifigduction), unsupervised transductive trans-
fer learning, TransductTransfer), relaxed transductive transfeiR¢laxTransductTransfer), and supervised inductive transfer
(InductTransfer).

Method Induction TransductTransfer RelaxTransductTransfer InductTransfer

Acc | Prec| Rec| F1 || Acc | Prec| Rec| F1 || Acc | Prec| Rec| F1 || Acc | Prec| Rec| F1
MAXIMUM ENTROPY

Basic 95 85 78 | 82 89 75 42 | 54 90 65 68 | 67 91 81 54 | 65

IFT, Liter || - - - |- 79 41| 90 [ 56| - - - |- - - - |-

IFT, 2 iters|| - - - - 82 | 45 | 86 | 59 - - - - - - - -

Regularize - - - - - - - - - - - - 96 87 84 | 85

Expand - - - - - - - - - - - - 93 | 84 | 62 | 72

SUPPORT VECTOR MACHINES
ISVM 92 78 58 | 67 90 86 40 | 54 90 86 40 | 55 92 86 52 | 65
TSVM 92 68 | 79 | 73 || 91 86 | 46 | 60 || 92 72 | 75 | 73 || 93 | 86 | 58 | 70
NAIVE BAYES
NB-ML 95 | 80 | 93 | 86| 85 | 50 | 81 |62 || 84 | 48 | 85 | 61| 8 | 55 | 84 | 67
NB-EM - - - - 79 40 84 | 54 80 41 82 | 55 - - - -

cels. Again, while MaxEnt is able to make significant use ods described in the first column of table 4. This suggests
of this information (note the jump to 67% from 54%), it that these inductive transfer methods are relying almost en
seems TSVM does a better job leveraging the prior knowl- tirely on their labeled target data in order to train thearszl
edge into better performance. Maximum Likelihood based sifiers, and are not making full use of the large amount of
Naive Bayes, on the other hand loses out. It seems that thdéabeled source data. One might assume that having access
class conditional probability is more critical in naive Bgy  to almost four times as much related data, in the form of the
than the prior, so tuning the latter’s value does not have anylabeled source data, would significantly boost their abilit
positive impact on its performance. Also, notice that the to classify the target data (this is, after all, one of théesta
EM based naive Bayes is even worse, repeating the pattermgoals of transfer learning). Disheartingly, in this instan
in the transductive transfer case. this seems not to be the case. The regularized maximum
entropy model does outperfofnthe basic MaxEnt in the
Finally, the last column of table 4 compares the perfor- inductive setting, but not by as much as might have been
mance of the three methods for inductive transfer learning: hoped for.
the prior-based regularized maximum entropy mettiebt In order to measure how much these inductive trans-
ularize, described in section 3.1.2), and the feature expand-fer methods’ explicit modeling of the transfer problem was
ing version Expand described in section 3.1.2). We can responsible for their performance, we compared them to
see that both methods handily outperform the transductiveyhe paselines of ISVM, TSVM, MaxEnt and Naive Bayes
transfer methods described in the second column of tableyained on a simple concatenation of the labeled source
4, and for the most part outperform even the relaxed trans-and target training data. These transfer-agnostic methods
ductive transfer versions in column three. This should not ¢jearly benefited from the addition of labeled target dasa (a
be surprising given the fact that the inductive transfetmet  compared to columfiransductiveTransfryet still yielded
ods can actually see some labeled examples from the targonsistently lower F1 than the transfer-aw&egularize
get domain and thus, in the case of MaxEnt, better esti-andExpandmethods, suggesting that the mere presence of
mate the conditional expectation of the features in the tar-|apeled sets of both types (source and target) of data is not

get data. Likewise, since they have access to labeled targegnough to account for the transfer methods’ superior esult
data, they can also assess the proportion of positive exam-

ples and adju.St. their deCiSion. functions accordingly. What 2Regularizehas F1 of 85 vs. MaxEnts 82. Significance was de-
IS more surprising, however, is th? fact t.hat thes_e methodSiermined by comparing the 99% binomial confidence interfaiseach
do not significantly outperform the inductive learning meth method's recall and precision.




Instead, it seems it is the modeling of the different domains [2] S. Ben-David, J. Blitzer, K. Crammer, and F. Pereira. lAna

in the transfer problem, even in simple ways, that provides

the extra boost to performance.

5 Conclusions

These experiments and analysis have shed light on a
number of important issues and considerations relatectto th

problems of transduction and transfer learning.

We have seen that in the case of discriminative models,
even a small amount of prior knowledge about the target
domain can greatly improve performance in a transductive
transfer problem. Generative model is not able to exploit
this information. For all these models, we notice that even
large amounts of source data cannot overcome the advan-

ysis of representations for domain adaptation.NIRS 20
Cambridge, MA, 2007. MIT Press.

[3] A. L. Berger, S. D. Pietra, and V. J. D. Pietra. A maximum

entropy approach to natural language processtamputa-
tional Linguistics 22(1):39-71, 1996.

4] J. Blitzer, R. McDonald, and F. Pereira. Domain adaptati

with structural correspondence learning. BMNLP, Syd-
ney, Australia, 2006.

R. Bunescu, R. Ge, R. Kate, E. Marcotte, R. Mooney,
A. Ramani, and Y. Wong. Comparative experiments on
learning information extractors for proteins and theiernt
actions. InJournal of Al in Medicine 2004. Data from
ftp://ftp.cs.utexas.edu/pub/mooney/bio-data/prateam.gz

C. Chelba and A. Acero. Adaptation of maximum entropy
capitalizer: Little data can help a lot. In D. Lin and D. Wu,
editors, EMNLP 2004 pages 285—-292. ACL, 2004.

tage of having access to labeled data drawn from the target [7] w. w. Cohen. Minorthird: Methods for identifying names

distribution.

We have also seen the degree to which pseudo-labeling
based schemes (in both TSVM’s margin-based model and
our MaxEnt's IFT-based model) can improve performance (8]
by incorporating the unlabeled structure of the target do-
main. However, this improvement is not seen in the gen-
erative Naive Bayes model. We believe this is because

discriminative models directly optimize classificatiorcae

racy, while the EM based Naive Bayes model optimizes an

unrelated function, namely, the marginal log-likelihood.

Finally, we have seen that the generative Naive Bayes [11]
model is robust in the inductive setting with large amount
of labeled data, while the discriminative models are attleas
as good or better in the transductive setting. Of the two
discriminative models considered, the margin based SVM

seems to adapt better to the unlabeled data.

6 Future work

Given the promising results of our MaxEnt based feature
transformation methods, we would like to further investi-
gate the theoretical properties of the IFT-type algorithms [16]
In particular, we would like to be able to guarantee conver-

gence.

In terms of the named entity extraction application, we
are also looking towards applying these techniques to the
sequential, rather than just binary labeling problem. Most [18
transfer learning results have emphasized the use of struc
ture in relating the source and target domain, and it seems
sequential classifiers like conditional random fields [23]

would be better equipped to exploit this structure.
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