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ABSTRACT
Many ranking models have been proposed in information re-

trieval, and recently machine learning techniques have also been
applied to ranking model construction. Most of the existing meth-
ods do not take into consideration the fact that significant differ-
ences exist between queries, and only resort to a single function
in ranking of documents. In this paper, we argue that it is nec-
essary to employ different ranking models for different queries and
conduct what we call query-dependent ranking. As the first such at-
tempt, we propose a K-Nearest Neighbor (KNN) method for query-
dependent ranking. We first consider an online method which cre-
ates a ranking model for a given query by using the labeled neigh-
bors of the query in the query feature space and then rank the docu-
ments with respect to the query using the created model. Next, we
give two offline approximations of the method, which create the
ranking models in advance to enhance the efficiency of ranking.
And we prove a theory which indicates that the approximations are
accurate in terms of difference in loss of prediction, if the learning
algorithm used is stable with respect to minor changes in training
examples. Our experimental results show that the proposed online
and offline methods both outperform the baseline method of using
a single ranking function.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval models

General Terms
Algorithms, Performance, Experimentation
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1. INTRODUCTION
Ranking will continually be an important research topic, as long

as search and other information retrieval applications keep devel-
oping and growing. When used in search, ranking becomes a task
as follows. Given a query, the documents related to the query in the
document repository are sorted according to their relevance to the
query using a ranking model, and a list of top ranked documents is
presented to the user. The key problem for the related research is
to develop a ranking model that best represents relevance.

Many models have been proposed for ranking, such as the Boolean
model [2], the vector space model [23, 24], BM25 [21] and lan-
guage model for IR [13, 18]. Recently, machine learning tech-
niques called learning to rank have also been applied to automatic
ranking model construction [5, 6, 7, 11, 17]. By leveraging labeled
training data and machine learning algorithms, this approach is able
to make the tuning of ranking model theoretically sounder and prac-
tically more effective. The training data consists of queries, their
associated documents and labels representing relevance of docu-
ments. In this paper, we also base our work on learning to rank.

In most of the previous work, a single ranking function is used
to handle all queries. This may not be appropriate, particularly
for web search, as explained below. Instead, it would be better to
exploit different ranking models for different queries. In this paper,
we refer to this approach as query-dependent ranking. (We note
that some authors use the term ‘query dependent ranking’ to refer to
the document ranking process of using both query information and
document information, in contrast to the process of using document
information alone [20]. We use the term differently in this paper.)

Queries in web search may vary largely in semantics and the
users’ intensions they represent, in forms they appear, and in num-
bers of relevant documents they have in the document repository.
For example, queries can be navigational, informational, or transac-
tional [22]. Queries can be personal names, product names, or ter-
minology. Queries can be phrases, combinations of phrases, or nat-
ural language sentences. Queries can be short or long. Queries can
be popular (which have many relevant documents) or rare (which
only have a few relevant documents). Using a single model alone
would make compromises among the cases and result in lower ac-
curacy in relevance ranking.



The IR community has realized the necessity of conducting query-
dependent ranking. However, efforts were mainly made on query
classification [3, 4, 12, 14, 22, 25, 26], but not ranking model con-
struction or ranking model learning. The only exception is Kang
and Kim’s work [12], to our knowledge, in which queries were
classified into two categories based on search intension and two dif-
ferent ranking models were tuned and used for the two categories.
Therefore, more investigations on the approach are needed, which
is also the motivation of this work.

Inspired by previous work [8], we propose a query-dependent
method for ranking model construction, on the basis of K-Nearest
Neighbor (KNN). We position the training queries into the query
feature space in which each query is represented by a point. In
ranking, given a test query we retrieve its k nearest training queries,
learn a ranking model with these training queries, and then rank
the documents associated with the test query using that model. The
accuracy of ranking can be enhanced by employing the proposed
method, due to the following reasons. First, in the method ranking
for a query is conducted by leveraging the useful information of the
similar queries and avoiding the negative effects from the dissimi-
lar ones. Second, ‘soft’ classification of queries is carried out and
similar queries are selected dynamically. Our experimental study
has verified the superiority of the KNN method to both the single
model approach and the query classification based approach.

Since KNN needs to conduct online training of the ranking model
for each test query, and this would not be affordable in practice, we
further propose two approximations of the method, which move the
training offline. We give both theoretical justification and empiri-
cal verification for the two offline methods. Specifically, we prove
that the approximations are accurate in terms of difference in loss
of prediction, if the learning algorithm used is stable with respect
to minor changes in training examples. The contributions of this
paper include the following points:

(1) Proposal of the approach of query-dependent ranking,

(2) Development of KNN methods for query-dependent ranking,

(3) Theoretical and empirical investigations of the methods.

The rest of this paper is organized as follows. In Section 2, re-
lated work is presented. In Section 3, the KNN method for query-
dependent ranking is proposed. In Section 4, experimental results
are reported. In the last section, conclusions are made and future
work is discussed.

2. RELATED WORK
There has not been much previous work on query dependent

ranking, except [12], as explained above. The most relevant re-
search topics are query classification and learning to rank.

Many efforts have been made on query classification. In [3, 4,
25], queries were classified according to topics, for instance, Com-
puters, Entertainment, Information, etc. as used in KDD Cup 2005.
In [12, 14, 22, 26], queries were classified according to users’
search needs, for instance, topic distillation, named page finding,
and homepage finding. Machine learning methods such as sup-
port vector machines were usually employed in the classification.
However, query classification was not extensively applied to query
dependent ranking, probably due to the difficulty of the query clas-
sification problem.

Recently, a large number of studies have been conducted on
learning to rank and its application to information retrieval. Exist-
ing methods for learning to rank fall into three categories: the point-
wise approach [17], which transforms ranking to classification or
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Figure 1: Distribution of Queries in TREC 2004 Data.

regression on single documents; the pair-wise approach [5, 7, 11],
which formalizes ranking as classification on document pairs; and
the list-wise approach [6, 28, 29], which directly minimizes a loss
function defined on document lists. The KNN based method pro-
posed in this paper can also be viewed as a new learning to rank
method.

3. RANKING USING K-NEAREST NEIGH-
BOR

3.1 Motivation
Queries can vary greatly between each other in several perspec-

tives, as explained above. For example, popular queries like ‘soc-
cer’ can have many relevant documents and thus features measuring
document popularity (e.g. PageRank) will be important for rank-
ing the documents related to this query. In contrast, rare queries
like ‘SIGIR 2007 workshop on learning to rank’ may only have a
few relevant documents, and thus the use of document popularity in
ranking is not even necessary. Using a single ranking model alone
would not be able to deal with these cases properly. Naturally we
think about employing the ‘query dependent approach’, in which
we train and use different ranking models for different queries.

A straightforward approach to query dependent ranking would
be to employ a ‘hard’ classification approach in which we classify
queries into categories and train a ranking model for each category.
We think, however, that it could be very difficult to achieve high
performance with this approach .

When looking at the data, we often observe that it is hard to draw
clear boundaries between the queries in different categories. Let us
take the TREC 2004 web track data as an example. There are in to-
tal 225 queries in the dataset, which have been manually classified
into three categories: topic distillation, named page finding, and
homepage finding. The queries are also associated with documents
and relevance labels of these documents.

We define features of queries, following the proposal in [26], and
represent the queries in a 27-dimensional query feature space. We
next reduce the space to 2-dimensions by using Principal Compo-
nent Analysis (PCA). We then plot the queries in this reduced space
and obtain the graph in Figure 1.

One can see from the figure that queries in different categories
are mixed together and cannot be separated using hard classifica-
tion boundaries. At the same time, one can observe that with high
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Figure 2: Illustration of KNN Online.

probability a query belongs to the same category as those of its
neighbors. We refer to this observation as the ‘locality property of
queries’. This locality property motivates us to tackle the problem
of query-dependent ranking using a K-Nearest Neighbor (KNN)
approach. In some sense, we can view KNN as an algorithm per-
forming ‘soft’ classification in the query feature space.

3.2 Online Method

3.2.1 KNN Online
We employ a K-Nearest Neighbor method for query dependent

ranking. For each training query qi(with corresponding training
data as S qi , i = 1, ...,m) 1, we define a feature vector and represent
it in the query feature space (a Euclidean space). Given a new test
query q, we try to find the k closest training queries to it in terms of
Euclidean distance. We then train a local ranking model online us-
ing the neighboring training queries (denoted as Nk(q)) and rank the
documents of the test query using the trained local model. For local
model training, we can in principle employ any existing learning to
rank algorithm. In this paper, we choose Ranking SVM [11].

We call the corresponding algorithm ‘KNN Online’. Figure 2
illustrates the workings of the algorithm where the square denotes
test query q, triangles denote training queries, and the large circle
denotes the neighborhood of query q. The details of the algorithm
are presented in Figure 3.

Needless to say, the query features used in the method are critical
to its accuracy. In this paper, we simply use the following heuristic
method to derive query features and leave further investigation of
the issue to future work.

For each query q, we use a reference model (in this paper BM25)
to find its top T ranked documents, and take the mean of the feature
values of the T documents as a feature of the query. For example, if
one feature of the document is tf-idf, then the corresponding query
feature becomes average tf-idf of top T ranked documents of the
query. If there are many relevant documents, then it is very likely
that the value of average tf-idf would be high.

3.2.2 Time Complexity
The time complexity of KNN Online is high, and most of the

computation comes from step (c) (online training) and step (b)
(finding k nearest neighbors).

At step (c), it trains the ranking model online from S Nk(q) ,

1S qi contains query qi, the training instances derived from its as-
sociated documents and the relevance judgments. When we use
Ranking SVM as the learning algorithm, S qi contains all the docu-
ment pairs associated with training query qi.

Algorithm: KNN Online

Input:
(1) A test query q and the associated documents to be ranked.

(2) Training data {S qi , i = 1, ...,m}.
(3) Reference model hr (currently BM25).

(4) Number of nearest neighbors k.

Output: Ranked list for query q.

Algorithm:

Offline pre-processing:
For each training query qi, use reference model hr to find its top T
ranked documents, and compute its query features from these docu-
ments.

Online training and testing:

(a) Use reference model hr to find the top T ranked documents
for query q, and compute q’s query dependent features from
these documents.

(b) Within the training data find k nearest neighbors of q, denoted
as Nk(q), with distance computed in the query feature space.

(c) Use the training set S Nk(q) , ∪q′∈Nk(q)S q′ to learn a local
model hq.

(d) Apply hq to the documents associated with query q, and obtain
the ranked list.

Figure 3: KNN Online Algorithm.

∪q′∈Nk(q)S q′ . Usually model training is time consuming. For in-
stance, the time complexity of training a Ranking SVM model is of
polynomial order in number of document pairs [10].

At step (b), it finds k nearest neighbors in the query feature space.
If we use a straightforward search algorithm, the time complex-
ity will be of order O(m log m), where m is the number of training
queries.

To reduce the aforementioned complexity, we further propose
two algorithms, which move the time-consuming steps offline.

3.3 Offline Methods

3.3.1 KNN Offline-1
To improve the efficiency of KNN Online, we consider a new

algorithm in which we move the model training offline. We refer to
this new algorithm as KNN Offline-1.

test query q

neighbors of qi* , which are 

used to learn a model for q

selected training query qi*
according to Eq. (1)

Figure 4: Illustration of KNN Offline-1.



Algorithm: KNN Offline-1

Input:
(1) A test query q and the associated documents to be ranked.

(2) Training data {S qi , i = 1, ...,m}.
(3) Reference model hr (currently BM25).

(4) Number of nearest neighbors k.

Output: Ranked list for query q.

Algorithm:

Offline training:

(1) For each training query qi, use reference model hr to retrieve
its top T documents, and compute its query features.

(2) For each training query qi, find k nearest neighbors of qi, de-
noted as Nk(qi), in the training data in the query feature space,
and use training set S Nk(qi) to learn a local model hqi .

Online testing:

(a) Use reference model hr to find top T documents for query q,
and compute its query features.

(b) Find k nearest neighbors of q, denoted as Nk(q) in the training
data in the query feature space.

(c) Find the most similar training set S Nk(qi∗) by using Eq.(1).

(d) Apply hqi∗ to the documents associated with query q, and ob-
tain the ranked list.

Figure 5: KNN Offline-1 Algorithm.

KNN Offline-1 is a method as follows. First, for each training
query qi, we find its k nearest neighbors Nk(qi) in the query feature
space. Then, we train a model hqi from S Nk(qi) offline and in ad-
vance. In testing, for a new query q, we also find its k nearest neigh-
bors Nk(q). Then, we compare S Nk(q) with every S Nk(qi), i = 1, ...,m
so as to find the one sharing the largest number of instances with
S Nk(q).

S Nk(qi∗) = arg max
S Nk (qi )

|S Nk(qi) ∩ S Nk(q)| (1)

where |.| denotes the number of instances in a set. Next, we use hqi∗ ,
the model of the selected training set (it has been created offline and
in advance), to rank the documents of query q.

Figure 4 illustrates the workings of KNN Offline-1. Here the
square represents the test query q and triangles represent the train-
ing queries. The triangles in the solid-line circle are the nearest
neighbors of q, the solid triangle represents the selected training
query qi∗ according to Eq.(1), and the triangles in the dotted-line
circle are the nearest neighbors of qi∗. In KNN Offline-1, the model
learned from the triangles in the dotted-line circle is used to test
query q. Figure 5 shows the details of the algorithm.

As will be discussed in Section 3.3.4, the model used in KNN
Online and the model used in KNN Offline-1 are similar to each
other, in terms of difference in loss of prediction.

3.3.2 KNN Offline-2
In KNN Offline-1, we can avoid online training. However, we

introduce additional computation for searching for the most ‘sim-
ilar’ training set. Furthermore, we still need to find the k nearest
neighbors of the test query online which is also time-consuming.

Considering that online response time is critical for search en-
gines, we propose a new algorithm, which we call KNN Offline-2,

test query q

neighbors of qi*, which are  

used to learn a model for q

nearest neighbor of q: qi*

Figure 6: Illustration of KNN Offline-2.

Table 1: Time Complexities of Testing.
KNN Offline-1 KNN Offline-2

Generate query feature O(n) O(n)
Find k nearest neighbors O(m log k) O(m)

Find offline model O(mk) -
Rank O(n log n) O(n log n)

to further reduce the time complexity in applying KNN Offline-1.
The idea of KNN Offline-2 is as follows. Instead of seeking the k

nearest neighbors for the test query q, we only find its single nearest
neighbor in the query feature space. Supposing that the nearest
neighbor is qi∗, we directly apply the model hqi∗ trained from S Nk(qi∗)
(offline and in advance) to test query q. In this way, we simplify the
search of k nearest neighbors to that of a single nearest neighbor,
and we no longer need to use Eq.(1) to find the most similar training
set. As a result, the time complexity can be significantly reduced.

The basic idea of KNN Offline-2 is illustrated in Figure 6. As
for the algorithm description, the only difference between KNN
Offline-2 and KNN Offline-1 is that in the former steps (b) and (c)
become ‘Find the nearest neighbor of q, denoted as qi∗’. We omit
the algorithm details.

3.3.3 Time Complexity
In Table 1, we list the time complexities of testing for KNN

Offline-1 and KNN Offline-2. Here, n denotes the number of docu-
ments to be ranked for the test query, k denotes the number of near-
est neighbors, and m denotes the number of queries in the training
data 2.

From Table 1, we can see that the time complexities for testing
KNN Offline methods mainly lie in the ranking part, which are of
order O(n log n). In this regard, the time complexities of online
testing are comparable with that of the single model approach (one
that trains a model using all the training data), which is also of order
O(n log n).

As for training, it is clear that the KNN Offline methods have
much higher time complexity than the single model approach. Sup-
pose Ranking SVM is used as the learning algorithm. As we know,

2Note that we treat k, m and n as variables, and leave other parame-
ters like T as constant in our complexity analysis. Furthermore, the
complexities we list in Table 1 are in accordance with our imple-
mentations, which are not necessarily the lowest complexities that
one could get. Usually m and n can range from thousands to tens
of thousands [5]. In our experiments, k can be in the hundreds.



the time complexity of training Ranking SVM is of polynomial or-
der in number of document pairs [10]. We use c to represent the
polynomial coefficient. According to [16], c ≈ 1.2 to 2, depend-
ing on the dataset and feature set used. Suppose that p is the av-
erage number of document pairs per training query, then the time
complexity of training for the single model approach is of order
O((mp)c), while those for the KNN Offline methods are of order
O(m(kp)c). That is to say, the time complexities of training for
KNN Offline methods are about k(k/m)(c−1)times higher than that
of the single model approach. (Note that we can further improve
the efficiency of training by running multiple training processes in
parallel.) However, considering the fact that for a search engine the
efficiency requirement on offline processing is usually not as high
as that on online processing, we can still say that KNN Offline-1
and KNN Offline-2 are feasible in practice.

3.3.4 Theoretical Analysis
Next, we conduct theoretical analysis to see whether and on

which condition KNN Offine-1 and KNN Offline-2 are accurate ap-
proximations of KNN Online, on the basis of stability theory. This
is very important for running the algorithms in practice.

Definition 1. Uniform leave-one-instance-out stability
Let X ,Y denote the input and label spaces respectively. S =

{z1 = (x1, y1), ..., zp = (xp, yp)} ⊂ (X × Y )p denotes the training
set. S i = {z1, ..., zi−1, zi+1, ..., zp} ⊂ (X ×Y )p−1 denotes the training
set derived by leaving one instance zi(i = 1, ..., p) out of S . L is the
learning algorithm which can learn a model hS by minimizing the
loss function

∑
i l(h, zi) on the training set S . Given τ : N → R,

we say that L has uniform leave-one-instance-out stability τ, if for
∀z ∈X × Y ,

|l(hS , z) − l(hS i , z)| 6 τ(p). (2)

T 1. Let S 1, S 2 denote two training sets with p1 and p2
instances respectively, hS 1 , hS 2 be two models learned from them by
using a learning algorithm L. If L has uniform leave-one-instance-
out stability τ, then we have ∀z ∈X × Y ,

|l(hS 1 , z) − l(hS 2 , z)| 6 τ(min(p1, p2))(p1 + p2 − 24), (3)

where 4 is the number of shared instances in S 1 and S 2.

It is easy to verify that Theorem 1 holds, and we omit the proof
here.

Theorem 1 states that when the training sets of two models are
similar, the models will also be similar in terms of the difference
in loss, if the learning algorithm is stable with respect to minor
changes in the training examples.

In our case, Ranking SVM is used as the learning algorithm.
Accordingly, we have

(1) Ranking SVM is proven to have uniform leave-one-instance-
out stability τ(p) = κ2

λp [1], where λ is a regularization coeffi-
cient, K(, ) is the kernel used, and ∀x ∈X ,K(x, x) ≤ κ2 <∝.
In this case, the upper bound in Eq.(3) becomes κ2

λ
γ, where

γ =
(p1+p2−24)
min(p1 ,p2) .

(2) Suppose that for a test query q, the training set S Nk(q) is used
in KNN Online and the training set S Nk(qi∗) is used in KNN
Offline. Thus, we have p1 = |S Nk(q)|, p2 = |S Nk(qi∗)|, and 4 =

|S Nk(qi∗)∩S Nk(q)|. If S Nk(qi∗) can have a large overlap with S Nk(q)

(i.e. γ is very small), then the performances of KNN Online
and KNN Offline will be very close to each other, in terms
of the difference in their prediction’s loss on any document

pairs associated with query q. This condition was validated
to be true on the datasets in our experiments (refer to Section
4.3.1 for details).

4. EXPERIMENTS

4.1 Experimental Setting

4.1.1 Dataset
In the experiment we used data obtained from a commercial

search engine. There are two datasets, one containing 1,500 train-
ing queries and 400 test queries (denoted as Dataset 1) and the other
containing 3,000 training queries and 800 test queries (denoted as
Dataset 2). Each query is associated with its retrieved documents
along with labels representing the relevance of those documents.
There are five levels of relevance: perfect, excellent, good, fair, and
bad. For a query-document pair, a feature vector is defined. There
are in total 200 features including term frequency, PageRank, etc.
All the methods tested in this section are based on the same feature
set.

Note that we did not use the public LETOR data [15], because
the numbers of queries in the datasets are too small to conduct
meaningful experiments on query dependent ranking.

4.1.2 Parameter Selection
In the experiments, we adopted Ranking SVM [11] as the basic

learning algorithm. Ranking SVM has only one parameter λ repre-
senting the trade-off between empirical loss and model complexity.
We set λ = 0.01 for all methods.

In KNN, we used BM25 as the reference model to rank docu-
ments, chose the top T = 50 documents, and then created query
features.

As we know, the parameter k in KNN is crucial to the perfor-
mance of the algorithm. In practice, this parameter is tuned auto-
matically based on a validation set. In order to clearly illustrate the
influence of this parameter on the ranking performance, however,
we present the testing results with respect to different values of k
instead of automatically determining its most appropriate value.

4.1.3 Evaluation Measure
We used NDCG [9] as our evaluation measure. NDCG at posi-

tion n is calculated as:

N(n) ≡ Zn

n∑

j=1


2r( j) − 1, j = 1, 2
2r( j)−1
log( j) , j > 2

(4)

where j is the position in the document list, r( j) is the score
of the j-th document in the document list (we represent scores of
perfect, excellent, good, fair, and bad as 4, 3, 2, 1, 0, respectively),
and Zn is a normalizing factor. Zn is chosen so that for the perfect
list NDCG at each position equals one.

4.2 Experimental Results

4.2.1 Comparisons with Baselines
We compared the proposed KNN methods with the baselines of

the single model approach (denoted as Single) and the query clas-
sification based approach (denoted as QC).

For the second baseline, we implemented the query type classi-
fier proposed in [26] to classify queries into three categories (topic
distillation, name page finding, and home page finding). Then we
trained one ranking model for each category. For a test query, we
first applied the classifier to determine its type, and then used the
corresponding ranking model to rank its associated documents.
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Figure 7: Comparisons between KNN Methods and Baselines.

In KNN, we set k = 400 for Dataset 1, and k = 800 for Dataset
23. The experimental results are shown in Figure 7. Note that mean
NDCG refers to the mean value of NDCG@1 through NDCG@10
(See also the experiments in [5]).

From Figure 7, we can see that the proposed three methods (KNN
Online, KNN Offline-1 and KNN Offline-2) perform comparably
well with each other, and all of them almost always outperform the
baselines (Single and QC). We conducted t-tests on the improve-
ments in terms of mean NDCG. The results indicate that for both
Dataset 1 and Dataset 2, the improvements of the KNN methods
over both Single and QC are statistically significant (p-value<0.05).
We make the following observations from these results:

(1) The better results of KNN over Single indicate that query
dependent ranking does help, and an approach like KNN can
indeed effectively accomplish the task.

(2) The superior results of KNN to QC indicate that an approach
based on soft classification of queries like KNN is more suc-
cessful than an approach based on hard classification of queries
like QC.

(3) QC cannot work better than Single, mainly due to the rela-
tively low accuracy of query classification. In fact, the accu-
racies of classification in terms of F1 measure are only about
60% in the two datasets. Errors in the query classification

3As discussed in Section 4.2.2, the ranking performance is ‘flat’
with respect to a large range of k values. Here we simply picked
one point from that range and used it in the experiments.
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Figure 8: Performances of KNN Methods with Different k Values
on Dataset 1.

can greatly damage the results of document ranking. This
also shows that it is not easy to develop a query dependent
ranking method that can beat conventional ranking methods.
In contrast, the KNN methods can successfully leverage the
ranking patterns of similar queries and achieve better ranking
performances.

4.2.2 Effects of Different k Values
We tested the performances of the KNN methods with different

values of parameter k, the number of nearest neighbors selected.
Notice that when k = m, KNN becomes equivalent to Single, where
m denotes the number of training queries.

Figure 8 shows the performances of the proposed methods on
Dataset 1 with different k values in terms of NDCG@5 and NDCG@10.
From this figure, we can see that as k increases, the performances
first increase and then decrease. More specifically,

(1) When only a small number of neighbors are used, the perfor-
mances of KNN are not so good due to the insufficiency of
training data.

(2) When the numbers of neighbors increase, the performances
gradually improve, because of the use of more information.

(3) However, when too many neighbors are used (approaching
1500, which is equivalent to Single), the performances begin
to deteriorate. This seems to indicate that query dependent
ranking can really help.
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Figure 9: Change Ratio between KNN Online and KNN Offline.

(4) The best performances are achieved when k takes values from
a relatively large range, i.e. from 300 to 800 4.

We obtain similar results on Dataset 2. Due to space limitations,
we omit them here.

4.3 Discussion

4.3.1 Validation of Theoretical Analysis
From the theoretical analysis in Section 3.3.4 we know that if

the training query sets in KNN Online and KNN Offline have a
large overlap (i.e. γ is very small), then the performances of KNN
Online and KNN Offline will be very close to each other. We call γ
the change ratio.

We tried to verify that this low change ratio assumption holds for
the datasets. Since Ranking SVM is used, document pairs become
the instances in this case. Figure 9 shows the relationship between
k and change ratio on Dataset 1 and Dataset 2. The x-axis denotes
k and the y-axis denotes change ratio.

From the figure we can see that the change ratio is always small.
Furthermore, when k approaches m, change ratio approaches zero.
Given the results,the theoretical discussions in Section 3.3.4 indi-
cate that KNN Online and KNN Offline can have very similar per-
formances. This seems to be verified by the experimental results in
Section 4.2 as well (i.e. their test performances are similar on both
Dataset 1 and Dataset 2).

4We observe the range in our experiments. However, we have no
idea whether the same conclusion holds on larger datasets.

Besides, the change ratio of KNN Offline-1 is smaller than KNN
Offline-2. This is reasonable since more simplifications have been
introduced in KNN Offline-2. Furthermore, we see that the change
ratio is smaller on Dataset 2 than on Dataset 1. This seems to be
reasonable: as data size increases, the density in the query feature
space will become higher, and therefore it will become easier to
find similar neighbors. Therefore, the change ratio may be smaller
in a larger dataset and the performances of KNN Online and KNN
Offline will tend to be more similar.

5. CONCLUSION AND FUTURE WORK
In this paper, we have pointed out that owing to the great va-

riety of queries, ranking of documents in search (particularly web
search) should be conducted by using different models based on dif-
ferent properties of queries. We have proposed a K-Nearest Neigh-
bor (KNN) approach to learning ranking functions along this direc-
tion. To improve the efficiency of the method we have also devised
two methods which conduct training offline. Experimental results
show that the proposed approach outperforms both the single model
approach and the query classification based approach.

As future work, we plan to investigate the following issues:

(1) We have focused on reducing the complexity of online pro-
cessing in our method. The complexity of the offline pro-
cessing is still high. We will investigate the feasibility of
conducting local clustering on the training queries (it is also
based on the locality property of queries) to further reduce
the offline complexity.

(2) The complexity of online processing in the KNN methods
can be further reduced if we use KD-trees [19] or other ad-
vanced data structures for our nearest neighbor search.

(3) As query features, we utilized one approach. We will try to
define other query features and investigate their effects on
performance.

(4) We have used Euclidean distance as the metric in our KNN
methods. It would be interesting to see whether other metrics
can work better for the task. Exploiting metric learning [27]
is also a direction we can explore.

(5) We have tried the KNN methods with fixed numbers of neigh-
bors. It is also a common practice to use a fixed radius in
KNN. We plan to make an investigation into this as well.

(6) We have studied one approach to query dependent ranking.
We plan to examine the many other potentially helpful ap-
proaches.
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