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Abstract

Most current intrusion detection systems employ signature-based methods or data
mining-based methods which rely on labeled training data. This training data is typ-
ically expensive to produce. We present a new geometric framework for unsupervised
anomaly detection, which are algorithms that are designed to process unlabeled data.
In our framework, data elements are mapped to a feature space which is typically a
vector space R¢. Anomalies are detected by determining which points lies in sparse
regions of the feature space. We present two feature maps for mapping data elements
to a feature space. Our first map is a data-dependent normalization feature map which
we apply to network connections. Our second feature map is a spectrum kernel which
we apply to system call traces. We present three algorithms for detecting which points
lie in sparse regions of the feature space. We evaluate our methods by performing
experiments over network records from the KDD CUP 1999 data set and system call
traces from the 1999 Lincoln Labs DARPA evaluation.

1 Introduction

Intrusion detection systems (IDSs) are an integral part of any complete security package
of a modern, well managed network system. The most widely deployed and commercially
available methods for intrusion detection employ signature-based detection. These methods
extract features from various audit streams, and detect intrusions by comparing the feature
values to a set of attack signatures provided by human experts. Such methods can only
detect previously known intrusions since these intrusions have a corresponding signature.
The signature database has to be manually revised for each new type of attack that is
discovered and until this revision, systems are vulnerable to these attacks. Because of this,
there has been a lot of research in the use of data mining and machine learning algorithms
which train on labeled (i.e. with instances preclassified as being an attack or not) data
to detect intrusions. These approaches leverage the generalization ability of data mining
methods in order to detect new attacks.



There are two major paradigms for training data mining-based intrusion detection sys-
tems: miususe detection and anomaly detection. In misuse detection approaches, each instance
in a set of data is labeled as normal or intrusion and a machine learning algorithm is trained
over the labeled data. For example, the MADAM/ID system [21] extracts features from
network connections and builds detection models over connection records that represent a
summary of the traffic from a given network connection. The detection models are general-
ized rules that classify the data with the values of the extracted features. These approaches
have the advantage of being able to automatically retrain intrusion detection models on
different input data that include new types of attacks.

Traditional anomaly detection approaches build models of normal data and detect de-
viations from the normal model in observed data. Anomaly detection applied to intrusion
detection and computer security has been an active area of research since it was originally
proposed by Denning [6]. Anomaly detection algorithms have the advantage that they can
detect new types of intrusions, because these new intrusions, by assumption, will deviate
from normal usage [6, 15]. In this problem, given a set of normal data to train from, and
given a new piece of data, the goal of the algorithm is to determine whether or not that
piece of data is “normal” or is an anomaly. The notion of “normal” depends on the specific
application, but without loss of generality, we can assume that this means stemming from
the same distribution. We refer to this problem for reasons that will become clear below as
supervised anomaly detection.

Most research in supervised anomaly detection can loosely be termed as performing
generative modeling. These approaches build some kind of a model over the normal data
and then check to see how well new data fits into that model. A survey of these techniques
is given in [29]. An approach for modeling normal sequences using look ahead pairs and
contiguous sequences is presented in [14], and a statistical method to determine sequences
which occur more frequently in intrusion data as opposed to normal data is presented in
[13]. One approach uses a prediction model obtained by training decision trees over normal
data [19], while another one uses neural networks to obtain the model [11]. Ensemble-based
approaches are presented in [9]. Lane and Brodley [18] evaluated unlabeled data for anomaly
detection by looking at user profiles and comparing the activity during an intrusion to the
activity during normal use. A technique developed at SRI in the EMERALD system [15]
uses historical records as its normal training data. It then compares distributions of new
data to the distributions obtained from those historical records and differences between the
distributions indicate an intrusion. Recent works such as [31] and [8] estimate parameters
of a probabilistic model over the normal data and compute how well new data fits into the
model.

Supervised anomaly detection algorithms require a set of purely normal data from which
they train their model. If the data contains some intrusions buried within the training data,
the algorithm may not detect future instances of these attacks because it will assume that
they are normal.

However, in practice, we do not have either labeled or purely normal data readily avail-
able. This makes the use of the traditional data mining-based approaches impractical. Gen-
erally, we must deal with very large volumes of audit data, and thus it is prohibitively
expensive to classify it manually. We can obtain labeled data by simulating intrusions, but



then we would be limited to the set of known attacks that we were able to simulate and
new types of attacks occurring in the future will not be reflected in the training data. Even
with manual classification, we are still limited to identifying only the known (at classification
time) types of attacks, thus restricting our detection system to identifying only those types.
In addition, if we collect raw data from a network environment, it is very hard to guarantee
that there are no attacks during the time we are collecting the data.

Recently there has been work on a third paradigm of intrusion detection algorithms,
unsupervised anomaly detection (also known as anomaly detection over noisy data [7]), to
address these problems [26]. These algorithms takes as input a set of unlabeled data and
attempt to find intrusions buried within the data. In the unsupervised anomaly detection
problem, we are given a set of data where it is unknown which are the normal elements
and which are the anomalous elements. The goal is to recover the anomalous elements.
Unsupervised anomaly detection is a variant of the classical outlier detection problem. After
these anomalies or intrusions are detected and removed, we can then train a misuse detection
algorithm or a traditional anomaly detection algorithm over the data.

In practice, unsupervised anomaly detection has many advantages over supervised anomaly
detection. The main advantage is that they do not require a purely normal training set. Un-
supervised anomaly detection algorithms can be performed over unlabeled data, which is easy
to obtain since it is simply raw audit data collected from a system. In addition, unsuper-
vised anomaly detection algorithms can be used to analyze historical data to use for forensic
analysis.

In this paper, we present a geometric framework for unsupervised anomaly detection. Our
frameworks maps the data to a feature space which are points in #¢. We then determine what
points are outliers based on the position of the points in the feature space. We label points
that are in sparse regions of the feature space as anomalies. Exactly how we determine which
points are in a sparse region of the feature space is dependent on the specific algorithm within
our framework that we are using. However, in general, our algorithms will detect anomalies
because they will tend to be distant from other points.

A major advantage of our framework is its flexibility. We can define our mappings to
feature spaces that better capture intrusions as outliers in the feature space. We can define
mappings over different types of data such as network connection records and system call
traces. Once we perform the mapping to the feature space, we can apply the same algorithm
to these different kinds of data. For network data, we present a data-dependent normalization
feature map specifically designed for outlier detection. For system call traces, we apply a
spectrum kernel feature map. Using these feature maps, we are able to process both network
data which is a vector of features and system call traces which are sequences of system calls
using the same algorithms.

We present three algorithms for detecting outliers in the feature space. All of the al-
gorithms are very efficient and can deal with high dimensional data. This is required for
the application of intrusion detection. Our first algorithm is a variant of the cluster-based
algorithm presented in Portnoy et al. [26]. The second algorithm is a k-nearest neighbor
based algorithm. The third algorithm is a Support Vector Machine-based algorithm.

We evaluated our three unsupervised anomaly detection algorithms over two types of
data sets, a set of network connections and sets of system call traces. The network data the



we examined was from the KDD CUP 99 data [1], which is a very popular and widely used
intrusion attack data set. The system call data set was obtained from the 1999 Lincoln Labs
DARPA intrusion detection evaluation [22]. Over both data sets, the methods show very
promising results.

2 Unsupervised Anomaly Detection

In the unsupervised anomaly detection problem, we are given a large data set where most
of the elements are normal, and there are intrusions buried within the data set [26]. Unsu-
pervised anomaly detection algorithms have the major advantage of being able to process
unlabeled data and detect intrusions that otherwise could not be detected. In addition, these
types of algorithms can semi-automate the manual inspection of data in forensic analysis by
helping analysts focus on the suspicious elements of the data.

Unsupervised anomaly detection algorithms make two assumptions about the data which
motivate the general approach. The first assumption is that the number of normal instances
vastly outnumbers the number of anomalies. The second assumption is that the anomalies
themselves are qualitatively different from the normal instances. The basic idea is that since
the anomalies are both different from normal and are rare, they will appear as outliers in
the data which can be detected. An example of an intrusion that an unsupervised algorithm
will have a difficulty detecting is a syn-flood DoS attack. The reason is that often under such
an attack there are so many instances of the intrusion that it occurs in a similar number to
normal instances. Our algorithms may not label these instances as an attack because the
region of the feature space where they occur may be as dense as the normal regions of the
feature space.

Unsupervised anomaly detection algorithms are limited to being able to detect attacks
only when the assumptions hold over that data which is not always the case. For example,
these algorithms will not be able to detect the malicious intent of someone who is authorized
to use the network and who uses it in a seemingly legitimate way. The reason is that this
intrusion is not qualitatively different from normal instances of the user. In our framework,
these instances would be mapped very close to each other in the feature space and the
intrusion would be undetectable.

A previous approach to unsupervised anomaly detection involves building probabilistic
models from the training data and then using them to determine whether a given network
data instance is an anomaly or not [7]. In this algorithm, a mixture model for explaining
the presence of anomalies is presented, and machine learning techniques are used to estimate
the probability distributions of the mixture to detect the anomalies.

There is recent work in distance based outliers which is similar to our approach to un-
supervised anomaly detection [16, 17, 3]. These approaches examine inter-point distances
between instances in the data to determine which points are outliers. A difference between
these approaches and the problem of unsupervised anomaly detection is that the nature of
the outliers are different. Often in network data, the same intrusion occurs multiple times
which means there are many similar instances in the data. However, the number of instances
of this intrusion is significantly smaller than the typical cluster of normal instances.



A problem related to unsupervised anomaly detection is the study of outliers in the field
of statistics. Various techniques have been developed for detecting outliers in univariate,
multivariate and structured data, using a given probability distribution. A survey of outliers
in statistics is given by [2].

3 A Geometric Framework for Unsupervised Anomaly
Detection

The key to our framework is mapping the records from the audit stream to a feature space.
The feature space is a vector space typically of high dimension. Inside this feature space, we
assume that some probability distribution generated the data. We wish to label the elements
that are in low density regions of the probability distribution as anomalies. However, in
general we do not know the probability distribution. Instead we label as anomalies points
that are in sparse regions of the feature space. For each point, we examine the point’s
location within the feature space and determine whether or not it lies in a sparse region of
the feature space. Exactly how we determine this depends on the algorithm that we are
using.

The choice of algorithm to determine which points lie in sparse regions and the choice
of the feature map is application dependent. However, critical to the practical use of these
algorithms for intrusion detection is the efficiency of the algorithms. This is because the
data sets in intrusion detection are typically very large.

3.1 Feature Spaces

Our data is collected from some audit stream of the system. Without loss of generality, this
data is split into data elements 1, ..., ;. We define the space of all possible data elements as
the input (instance) space X. Exactly what our input space is depends on the type of data
that is being analyzed. Our input space can be the space of all possible network connection
records, event logs, system call traces, etc.

We map elements of our input space to points in a feature space Y. In our framework a
feature space is typically a real vector space of some high dimension d, ¢, or more generally
a Hilbert space. The main requirement for our applications in the feature space is that we
can define a dot product between elements of the feature space.

We define a feature map to be a function that takes as input an element in the input
space and maps it to a point in the feature space. In general, we use ¢ to define a feature
map and we get

p: X —>Y . (1)

We use the term image of a data element z to denote the point in the feature space ¢(z).
Since our feature space is a Hilbert space, for any points y; and y, their dot product
< y1,y2 > is defined. Any time we have a dot product, we can also define a norm on the
space as well as a distance.
The norm of a point y in the feature space ||y|| is simply the square root of the dot
product of the point with itself, ||y|| = \/<wy,y>. Using this and the fact that a dot
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product is a symmetric bilinear form we can define the distance between two elements of the
feature space y; and y, with

=l = V<yi—y2 1 — 42 >
= V<yny > —2<yLy >+ <y,yp >

Using our framework, we can use the feature map to define relations between elements of
the input space. Given two elements in the input space x; and x4, we can use the feature map
to define a distance between the two elements as the distance between their corresponding
images in the feature space. We can define our distance function d, as

dp(21,22) = |[¢(21) — P(22)]| (2)
= V< 6(m),8(m1) > =2 < 9(11), 6(w2) > + < 9(22), 9(22) >
For notational convenience, we often drop the subscript from d.

If the feature space is R¢, this distance corresponds to standard Euclidean distance in
that space.

3.2 Kernel Functions

In many cases, it is difficult to explicitly map a data instance to a point in its feature space.
One reason is that the feature space has a very high dimension which makes it difficult to
explicitly store the points in the feature space because of memory considerations. In some
cases, the explicit map may be very difficult to determine.

However, for our purposes, we are interested in the dot products of points in the feature
space. If have a mechanism for computing the dot product of the images of two data elements,
we do not need to explicitly map the data elements to their images.

We can define a kernel function to compute these dot products in the feature space. A
kernel function is defined over a pair of elements in the feature space and returns the dot
product between the images of those elements in the feature space. More formally

Ky(21,22) =< (21), d(22) > . (3)

We can redefine our distance measure (2) through a kernel function as

dy (w1, 2) = \/Ky(w1,01) — 2K g(21, 72) + Ky(2,22) . (4)

In many cases, the kernel function can be computed efficiently without explicitly mapping
the elements from the input space to their images. A function is a kernel function if there
exists a feature space which is a Hilbert space and for which the kernel function corresponds
to a dot product. There are conditions on whether or not a function is a kernel which are
described in detail in [5].

An example of a kernel that performs the mapping implicitly is the radial basis kernel.
The radial basis kernel is a function of the form

2
_ =g —zoll

Kp(@, ) =€ & . (5)
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The radial basis kernel corresponds to an infinite dimensional feature space [5].

In addition to the computational advantages of kernels, we can define kernels to take
advantage of our intuitions about the application. We can easily weight various features
higher or lower depending on domain knowledge.

3.3 Convolution Kernels

Although the examples of kernels we have given up to this point have been defined over
input spaces which are vector spaces, we can define kernels over arbitrary input spaces.
These kinds of kernels are referred to as convolution kernels [12, 30].

In this framework, we can define our kernels directly over our audit data without needing
to first convert our data into a vector in R". In addition, since kernels can be defined on
not only numerical features, but other types of structures such as sequences, we can define
kernels to handle many different types data such as sequences of system calls and event logs.
This allows us to handle different kinds of data in a consistent framework using different
kernels but using the same algorithms which are defined in terms of kernels.

4 Detecting Outliers in Feature Spaces

After mapping our data to points in the feature space, we can more easily formalize the
problem of unsupervised anomaly detection. The main idea is that we want to detect points
that are distant from most other points or in relatively sparse regions of the feature space.
This is similar to the problem of outlier detection.

We present three algorithms for detecting anomalies in the feature space. All of the
algorithms can be implemented in terms of dot products of the input elements which allows
us to use kernel functions to perform implicit mappings to the feature space. Each algorithm
detects points that lie in sparse regions in a different way.

The first algorithm is a variant of the cluster-based algorithm presented in [26]. For each
point, the algorithm approximates the density of points near the given point. The algorithm
makes this approximation by counting the number of points that are within a sphere of radius
w around the point. Points that are in a dense region of the feature space and contain many
points within the ball are considered normal. Points that are in a sparse region of the feature
space and contain few points within the ball are considered anomalies. We implement an
efficient approximation to this algorithm. We first perform fixed-width clustering over the
points with a radius of w. We then sort the clusters based on the size. The points in the
small clusters are labeled anomalous. We present details of the efficient algorithm below.

The second algorithm detects anomalies based on computing the k-nearest neighbors of
each point. If the sum of the distances to the k-nearest neighbors is greater than a threshold,
we consider the point an anomaly. We present below an efficient algorithm to detect outliers
which uses a fixed-width clustering algorithm to significantly speed up the computation of
the k-nearest neighbors.

The third algorithm is a support vector machine based algorithm that identifies low
support regions of a probability distribution by solving a convex optimization problem [28].
The points in the feature space are further mapped into another feature space using a
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Gaussian kernel. In this second feature space, a hyperplane is drawn to separate the majority
of the points away from the origin. The remaining points represent the outliers or anomalies.

Each of these three algorithms is optimizing a clearly defined objective function over
points in the feature space. We can present efficient algorithms to solve these problems
given their formulation.

5 Algorithm 1: Cluster-based Estimation

The goal for our first algorithm is to compute how many points are “near” each point in
the feature space. A parameter to the algorithm is a radius w also referred to as the cluster
width. For any pair of points z; and x5 we consider the two points “near” each other if their
distance is less that or equal to w, d(x1,22) < w with distance defined as in equation (2).
For each point z, we define N(z) to be the number of points that are within w of point

x. More formally we define
N(z) = {sld(z,s) <w}| . (6)

The straightforward computation of N(z) for all points has a complexity of O(n?) where
n is the number of points. The reason is that we have to compute the pairwise distances
between all points.

However, since we are really only interested in determining what the outliers are, we can
effectively approximate the computation as follows.

We first perform fixed-width clustering over the entire data set with cluster width w.
Then we label the points in the small clusters as anomalies.

A fixed width clustering algorithm is as follows. The first point is center of the first
cluster. For every subsequent point, if it is within w of a cluster center, it is a added to that
cluster. Otherwise it is a center of a new cluster. Note that some points may be added to
multiple clusters. The fixed width clustering algorithm requires only one pass through the
data. The complexity of the algorithm is O(cn) where c is the number of clusters and n is
the number of data points. For a reasonable w, ¢ will be significantly smaller than n.

Note that by the definition in (6), for each cluster, the number of points near the cluster
center, N(c), is the number of points in the cluster c¢. For each point x, not a center of
a cluster, we approximate N(x), by N(c) for the cluster ¢ that contains z. For points in
very dense regions where there is a lot of overlap between clusters, this will be an inaccurate
estimate. However, for points that are outliers, there will be relatively few overlapping
clusters in these regions and N(c) will be an accurate approximation of N(z). Since we are
only interested in the points that are outliers, the points in the dense regions will be higher
than the threshold anyway. Thus the approximation is reasonable in our case.

With the efficient approximation algorithm, we are able to process significantly larger
data sets then possible with the straightforward algorithm because we do not need to perform
a pairwise comparison of points.



6 Algorithm 2: K-nearest neighbor

Our second algorithm determines whether or not a point lies in a sparse region of the feature
space by computing the sum of the the distances to the k-nearest neighbors of the point.
We refer to this quantity as the k-NN score for a point.

Intuitively, the points in dense regions will have many points near them and will have a
small k-NN score. If the size of k exceeds the frequency of any given attack type in the data
set and the images of the attack elements are far from the images of the normal elements,
then the k-NN score is useful for detecting these attacks.

The main problem with computing the k-NN score is that it is computationally expensive
to compute the k-nearest neighbors of each point. The complexity of this computation is
O(n?) which is impractical for intrusion detection applications.

Since we are interested in only the k-nearest points to a given point, we can significantly
speed up the algorithm by using a technique similar to canopy clustering [23]. Canopy
clustering is used as a means of breaking down the space into smaller subsets so as to
remove the necessity of checking every data point. We use the clusters as a tool to reduce
the time of finding the k-nearest neighbors.

We first cluster the data using the fixed-width clustering algorithm of the previous sec-
tion with a variation where we place each element into only one cluster. Once the data
is clustered with width w, we can compute the k-nearest neighbors for a given point = by
taking advantage of the following properties.

We denote as ¢(z) the point which is the center of the cluster that contains a given point
x. For a cluster ¢ and a point x we use the notation d(z,c) to denote the distance between
the point and the cluster center. For any two points x; and x,, if the points are in the same
cluster

d¢($1,$2) S 2w (7)
and in all cases
dg(z1,22) < dg(1,c(m2)) + W (8)
de(x1,22) > dg(x1,c(z2)) —w0 . 9)
The algorithm uses these three inequalities to determine the k-nearest neighbors of a

point .

Let C be a set of clusters. Initially C contains all of the clusters in the data. At any
step in the algorithm, we have a set of points which are potentially among the k-nearest
neighbor points. We denote this set P. We also have a set of points that are in fact among
the k-nearest neighbor points. We denote this set K. Initially K and P are empty. We
precompute the distance from x to each cluster. For the cluster with center closest to z, we
remove it from C and add all of its points to P. We refer to this operation as “opening” the
cluster. The key to the algorithm is that we can obtain a lower bound the distance from all
points in the clusters in set C' using equation (9). We define

diin = Icrélcl’l d(z,c) —w . (10)
The algorithm performs the following. For each point in z; € P, we compute d(z, z;). If

d(z,x;) < dpjp, We can guarantee that z; is closer point to  then all of the points in the



clusters in C'. In this case, we remove x; from P and add it to K. If we can not guarantee
this for any element of P (including the case that if P is empty), then we “open” the closest
cluster by adding all of its points to P and remove that cluster from C. Notice that when
we remove the cluster from C, d,;;, will increase. Once K has k elements, we terminate.

Most of the computation is spent checking the distance between points in D to the cluster
centers. This is significantly more efficient than computing the pairwise distances between
all points.

The choice of width w does not affect the k-NN score, but instead only affects the
efficiency of computing the score. Intuitively, we want to choose a w that splits the data
into reasonably sized clusters.

7 Algorithm 3: One Class SVM

Our third algorithm uses an algorithm presented in [28] to estimate the region of the feature
space where most of the data occurs. We first map our feature space into a second feature
space with a radial basis kernel, equation (5), and then work in the new feature space.

The standard SVM algorithm is a supervised learning algorithm. It requires labeled
training data to create its classification rule. In [28], the SVM algorithm was adapted into
an unsupervised learning algorithm. This unsupervised variant does not require its training
set to be labeled to determine a decision surface.

Whereas the supervised version of SVM tries to maximally separate two classes of data
in feature space by a hyperplane, the unsupervised version instead attempts to separate the
entire set of training data from the origin. This is done by solving a quadratic program that
penalizes any points not separated from the origin while simultaneously trying to maximize
the distance of this hyperplane from the origin. At the end of this optimization, this hyper-
plane then acts as our decision function, with those points that it separates from the origin
classified as normal, and those which are on the other side of the hyperplane, we classify as
anomalous.

The algorithm is similar to the standard SVM algorithm in that it uses kernel functions
to perform implicit mappings and dot products. It also uses the same kind of hyperplane for
the decision surface. The solution is only dependent on the support vectors as well. However,
the support vectors are determined in a different way. This algorithm attempts to find a
small region where most of the data lies and label points in that region as class +1. Points
in other regions are labeled as class —1. The main idea is that the algorithm attempts to
find the hyperplane that separates the data points from the origin with mazimal margin.
The decision surface that is chosen is determined by solving an optimization problem that
determines the “best” hyperplane under a set of criteria which is beyond the scope of this
paper and described fully in [5].

The specific optimization that is solved for estimating the hyperplane specified by the
hyperplane’s normal vector in the feature space w and offset from the origin p is

i 1 2 1l
subject t0: (w - §(z:)) > p= Gy G > 0 (12)
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where 0 < v < 1 is a parameter that controls the trade off between maximizing the distance
from the origin and containing most of the data in the region created by the hyperplane and
corresponds to the ratio of expected anomalies in the data set. (; are slack variables that
penalize the objective function but allow some of the points to be on the other wrong side
of the hyperplane.

After we solve the optimization problem, the decision function for each point x is

f(@) =sgn((w- ¢(z)) —p) . (13)

If we introduce a Lagrangian and rewrite this optimization in terms of the Lagrange
multipliers «; we can represent the optimization as

1
minimize: 2 Z aiajK¢($ia ﬂcj)
1,7

1
subject to: 0 < a; < —Z,Zai =1
v .
(2

at the optimum, p can be computed from the Lagrange multipliers for any z; such that
the corresponding Lagrange multiplier «; satisfies 0 < o; < i

p =2 0iKy(xj, i)
J

In terms of the Lagrange multipliers, the decision function is

o) =sem (S oukstona) =) (14)

One property of the optimization is that for the majority of the data points, «; will be 0
which makes the decision function efficient to compute.

The optimization is solved with a variant of the Sequential Minimal Optimization algo-
rithm [25]. Details on the optimization, the theory behind the relation of this algorithm
and the estimation of the probability density of the original feature space, and details of the
algorithm are fully described in [28].

8 Feature Spaces for Intrusion Detection

The choice of feature space for unsupervised anomaly detection is application specific. The
performance greatly depends on the ability of the feature space to capture information
relevant to the application. For optimal performance, it is best to analyze the specific
application and choose a feature space accordingly.

In our experiments, we analyze two data sets. The first data set is a set of network
connection records. This data set contains records which contain 41 features describing a
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network connection. The second data set is a set of system call traces. Each entry is a
sequence of all of the system calls that a specific process makes during its execution.

We use two different feature maps for the different kinds of data that we analyze. For
data which are records, we use a data-dependent normalization kernel to implicitly define
the feature map. This feature map takes into account how abnormal a specific feature in
a record is when it performs the mapping. We have found that this significantly improves
detection performance.

For system call data where each trace is a sequence of system calls, we apply a string kernel
over these sequences. The kernel we use is called a spectrum kernel which was previously
used to analyze biological sequences [4]. The spectrum kernel maps short sub-sequences of
the string into the feature space. This is consistent with our intuitions for intrusion detection
because short sub-sequences have been the primary basis for analysis of system call sequences
previously [10, 20, 8].

8.1 Data-dependent Normalization Kernels

For data which is a network connection record, we use a data-dependent normalization
feature map. This feature map takes into account the variability of each feature in the
mapping in such a way that normalizes the relative distances between feature values in the
feature space.

There are two types of attributes in a connection record. There are either numerical
attributes or discrete attributes. Examples of numerical attributes in connection records are
the number of bytes in a connection or the amount of connections to the same port. An
example of discrete attributes in network connection records is the type of protocol used for
the connection. Even some attributes that are numerical are in fact discrete values, such as
the destination port of a connection. We handle discrete and numerical attributes differently
in our kernel mapping.

One problem with the straightforward mapping of the numerical attributes is that they
are all on different scales. If a certain attribute is a hundred times larger than another
attribute, it will dominate the second attribute.

We normalize all of our attributes to the number of standard deviations away from the
mean. This scales our distances based on the likelihood of the attribute values. This feature
map is data dependent because the distance between two points depends on the mean and
standard deviation of of the attributes which in turn depends on the distribution of attribute
values over all of the data.

For discrete values, we use a similar data dependent idea. Let X; be the set of possible
values for discrete attribute i. For each discrete attribute we have |¥;| coordinates in the
feature space corresponding to this attribute. There is one coordinate for every possible
value of the attribute. A specific value of the attribute gets mapped to the feature space
as follows. The coordinate corresponding to the attribute value has a positive value ﬁ
and the remaining coordinates corresponding to the feature have a value of 0. The distance
between two vectors is weighted by the size of the range of values of the discrete attributes.
A different value for attribute 7 between two records will contribute ﬁ to the square of the
norm between the two vectors.
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8.2 Kernels for Sequences: The Spectrum Kernel

Convolution kernels can be defined over arbitrary input spaces. We use a kernel defined over
sequences to model sequences of system calls. The specific kernel we use is a spectrum kernel
which has been successfully applied to modeling biological sequences [4].

The spectrum kernel is defined over an input space of sequences. These sequences can
be an arbitrary long sequence of elements from an alphabet . For any k£ > 0, we define the
feature space of the k-spectrum kernel as follows. The feature space is a |X|* dimensional
space where each coordinate corresponds to a specific £ length sub-sequence. For a given
sequence, the value of a specific coordinate of the feature space is the count of the number
of times the corresponding sub-sequence occurs in the sequence. These sub-sequences are
extracted from the sequence by using a sliding window of length £.

The dimension of the feature space is exponential in £ which makes it impractical to
store the feature space explicitly. Note that the feature vectors corresponding to a sequence
are extremely sparse. We can take advantage of this fact and efficiently compute the kernels
between sequences using an efficient data structure as described in [4]. This is critical because
in one of our experiments we consider 26 possible system calls and sub-sequences of length
4 which gives a dimension of the feature space of close to 500, 000.

9 Experiments

We perform experiments over two different types of data. We analyze network connection
records, and system call traces.

9.1 Performance measures

To evaluate our system we were interested in two major indicators of performance: the
detection rate and the false positive rate. The detection rate is defined as the number of
intrusion instances detected by the system divided by the total number of intrusion instances
present in the test set. The false positive rate is defined as the total number of normal
instances that were (incorrectly) classified as intrusions divided by the total number of normal
instances. These are good indicators of performance, since they measure what percentage
of intrusions the system is able to detect and how many incorrect classifications it makes in
the process. We calculate these values over the labeled data to measure performance.

The trade-off between the false positive and detection rates is inherently present in many
machine learning methods. By comparing these quantities against each other we can evaluate
the performance invariant of the bias in the distribution of labels in the data. This is
especially important in intrusion detection problems because the normal data outnumbers
the intrusion data by a factor of 100 : 1. The classical accuracy measure is misleading
because a system that always classifies all data as normal would have a 99% accuracy.

We plot ROC (Receiver Operating Characteristic) [27] curves depicting the relationship
between false positive and detection rates for one fixed training/test set combination. ROC
curves are a way of visualizing the trade-offs between detection and false positive rates.
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9.2 Data Set Descriptions

The network connection records we used was the KDD Cup 1999 Data [1], which contained
a wide variety of intrusions simulated in a military network environment. It consisted of
approximately 4,900,000 data instances, each of which is a vector of extracted feature values
from a connection record obtained from the raw network data gathered during the simulated
intrusions. A connection is a sequence of TCP packets to and from some IP addresses. The
TCP packers were assembled into connection records using the Bro program [24] modified
for use with MADAM/ID [21]. Each connection was labeled as either normal or as exactly
one specific kind of attack. All labels are assumed to be correct.

The simulated attacks fell in one of the following four categories : DOS - Denial of
Service (e.g. a syn flood), R2L - Unauthorized access from a remote machine (e.g. password
guessing), U2R - unauthorized access to superuser or root functions (e.g. a buffer overflow
attack), and Probing - surveillance and other probing for vulnerabilities (e.g. port scanning).
There were a total of 24 attack types.

The extracted features included the basic features of an individual TCP connection such
as its duration, protocol type, number of bytes transferred, and the flag indicating the normal
or error status of the connection. Other features of an individual connection were obtained
using some domain knowledge, and included the number of file creation operations, number
of failed login attempts, whether root shell was obtained, and others. Finally, there were a
number of features computed using a two-second time window. These included - the number
of connections to the same host as the current connection within the past two seconds,
percent of connections that have ”SYN” and "REJ” errors, and the number of connections
to the same service as the current connection within the past two seconds. In total, there
are 41 features, with most of them taking on continuous values.

The KDD data set was obtained by simulating a large number of different types of attacks,
with normal activity in the background. The goal was to produce a good training set for
learning methods that use labeled data. As a result, the proportion of attack instances to
normal ones in the KDD training data set is very large as compared to data that we would
expect to observe in practice.

Unsupervised anomaly detection algorithms are sensitive to the ratio of intrusions in
the data set. If the number of intrusions is too high, each intrusion will not show up as
anomalous. In order to make the data set more realistic we filtered many of the attacks so
that the resulting data set consisted of 1 to 1.5% attack and 98.5 to 99% normal instances.

The system call data is from the BSM (Basic Security Module) data portion of the 1999
DARPA Intrusion Detection Evaluation data created by MIT Lincoln Labs [22]. The data
consists of 5 weeks of BSM data of all processes run on a Solaris machine. We examined
three weeks of traces of the programs which were attacked during that time. The programs
we examined were eject, and ps.

Each of the attacks that occurred correspond to one or more process traces. An attack
can correspond to multiple process traces because a malicious process can spawn other
processes. We consider the attack detected if one of the processes that correspond to the
attack is detected.

Tables 1 summarize the system call trace data sets and list the number of system calls
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Table 1: Lincoln Labs Data Summary

Program Total # | # Intrusion | # Intrusion | # Normal | # Normal | % Intrusion
Name of Attacks Traces System Calls Traces System Calls Traces
ps 3 21 996 208 35092 2.7%
eject 3 6 726 7 1278 36.3%

and traces for each program.

9.3 Experimental Setup

For each of our data sets, we split the data into two portions. One portion, the training set,
was used to set parameters values for our algorithms and the second, the test set, was used
for evaluation.

We set parameters based on the training set. Then for each of the methods over each
of the data sets, we varied the detection threshold and at each threshold computed the
detection rate and false positive rate. For each algorithm over each data set we obtained a
ROC curve.

Our parameter settings are as follows. For the cluster-based algorithm presented in
Section 5, when processing the network connection data, we set the width of the fixed-width
clustering to be 40 in the feature space. For the eject system call traces, the width was set
to be 5. For the ps traces, the width was set to be 10.

For the k-nearest neighbor-based algorithm presented in Section 6, for the KDD cup
data, the value of k£ was set to 10,000 of the data set. For the eject data set, £ = 2 and for
the ps data set, £k = 15. The k is adjusted to the overall size of the data.

For the SVM-based algorithm in Section 7, for the KDD cup data, we set v = .01 and
02 = 12. For the system call data sets, we used a value of v = .05 and 02 = 1.

9.4 Experimental Results

Our approach to unsupervised anomaly detection performed very well over both types of
data.

In the case of the system call data, the each of the algorithms performed perfectly. What
this means is that at a certain threshold, there was at least one process trace from each of the
attacks identified as being malicious without any false positives. An explanation for these
results can be obtained by looking at exactly what the feature space is encoding. Each system
call trace is mapped to a feature space using the spectrum kernel that contains a coordinate
for each possible sub-sequence. Process traces that contain many of the same sub-sequences
of system calls are closer together than process traces that contain fewer sub-sequences of
system calls.

The results are not surprising when we consider previous approaches to anomaly detection
over system call traces. In the original work in this area [10], sub-sequences of system calls
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Algorithm | Detection rate | False positive rate
Cluster 93% 10%
Cluster 66% 2%
Cluster 47% 1%
Cluster 28% 5%
K-NN 91% 8%
K-NN 23% 6%
K-NN 11% 4%
K-NN 5% 2%
SVM 98% 10%
SVM 91% 6%
SVM 67% 4%
SVM 5% 3%

Table 2: Selected points from the ROC curves of the performance of each algorithm over the
KDD Cup 1999 Data.

were the basis of the detection algorithm. The supervised anomaly detection algorithm
presented in [10] recorded a set of sub-sequences that occurred in a normal training set and
then detected anomalies in a test set by counting the number of unknown sub-sequences
that occur within a window of 20 consecutive sub-sequences. If the number of previously
unseen sub-sequences is above a threshold, then the method would determine that the process
corresponds to an intrusion. The results of their experiments suggest that there a many sub-
sequences that occur in malicious processes that do not occur in normal processes. This
explains why in our feature space defined by the spectrum kernel, the intrusion processes
are significantly far away from the normal processes. Also, in our experiments, the normal
processes clumped together in the feature space. This is why the intrusion processes were
easily detected as outliers.

For the network connections, the data is not nearly as regular as the system call traces.
From our experiments, we found that there were some types of attacks that we were able to
detect well and other types of attacks that we were not able to detect. This is reasonable
because some of the attacks using our feature space were in the same region as normal data.
Although the detection rates are lower than what is typically obtained for either misuse or
supervised anomaly detection, the problem of unsupervised anomaly detection is significantly
harder because we do not have access to the labels or have a guaranteed clean training set.

Figure 1 shows the performance of the three algorithms over the KDD Cup 1999 data.
Table 2 shows the Detection Rate and False Positive Rate for some selected points from the
ROC curves. All three algorithms perform relatively close to each other.

10 Discussion

This paper presents a geometric framework for unsupervised anomaly detection. The frame-
work maps data elements to a feature space and then detects anomalies by determining
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ROC Curves for KDD Cup 1999 Data Set
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Figure 1. ROC curves showing the performance of the 3 algorithms over the KDD data set. The

curves are obtained by varying the threshold.

which points lie in sparse regions of the feature space. We presented two feature maps. The
first feature map is a data-dependent normalization feature map which is applied to network
connection records. The second feature map is a spectrum kernel which is applied to system
call traces. We also presented three algorithms for detecting points in the sparse regions
of the feature space. The first algorithm is a cluster-based approach which is a variant of
[26]. The second algorithm is a k-nearest neighbor-based approach. The third algorithm is
a SVM-based approach. Each of these algorithms can be applied to any feature space which
when combined with the different feature maps, allows us to apply the same algorithms to
model different kinds of data.

We evaluated our methods over both a collection of network records and a set of system
call traces. In both cases, our algorithms were able to detect intrusions over the unlabeled
data. In practice, detecting intrusions over unlabeled data is important, because these
algorithms can be applied to raw collected system data and do not need to be manually
labeled which can be an expensive process.

Future work involves defining more feature maps over different kinds of data and per-
forming more extensive experiments evaluating the methods presented in this paper.
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